Journal of Bioenergetics and Biomembranes

, Volume 49, Issue 1, pp 27–47 | Cite as

Mitochondrial Ca2+ and regulation of the permeability transition pore

  • Stephen Hurst
  • Jan Hoek
  • Shey-Shing Sheu


The mitochondrial permeability transition pore was originally described in the 1970’s as a Ca2+ activated pore and has since been attributed to the pathogenesis of many diseases. Here we evaluate how each of the current models of the pore complex fit to what is known about how Ca2+ regulates the pore, and any insight that provides into the molecular identity of the pore complex. We also discuss the central role of Ca2+ in modulating the pore’s open probability by directly regulating processes, such as ATP/ADP balance through the tricarboxylic acid cycle, electron transport chain, and mitochondrial membrane potential. We review how Ca2+ influences second messengers such as reactive oxygen/nitrogen species production and polyphosphate formation. We discuss the evidence for how Ca2+ regulates post-translational modification of cyclophilin D including phosphorylation by glycogen synthase kinase 3 beta, deacetylation by sirtuins, and oxidation/ nitrosylation of key residues. Lastly we introduce a novel view into how Ca2+ activated proteolysis through calpains in the mitochondria may be a driver of sustained pore opening during pathologies such as ischemia reperfusion injury.


Mitochondrial permeability transition pore Calcium Reactive oxygen species Glycogen synthase kinase 3 Beta Cyclophilin D Calpain 


2-Oxoglutarate dehydrogenase




Adenine nucleotide translocator


Alpha ketoglutarate dehydrogenase


Calcium retention capacity


Circularly permuted yellow fluorescence protein


Citrate synthase


Complex I-V


Cyclophilin D


Cyclosporine A


Dynamin-like protein 1


Electron transport chain


Essential MCU regulator




Glioblastoma amplified sequence


Glycogen synthase kinase 3 beta




Inner mitochondrial membrane


Inorganic phosphate


Ischemia reperfusion


Isocitrate dehydrogenase


Leucine Zipper-EF-Hand Containing Transmembrane Protein


Na+/Ca2+ Li+-permeable exchanger


Malate dehydrogenase


Mitofusin 2


Mitochondrial benzodiazepine receptor


Mitochondrial calcium uniporter


Mitochondrial calcium uniporter regulator 1


Mitochondrial calcium uptake


Mitochondrial creatine kinase


Mitochondrial permeability transition pore


Mitochondria membrane potential


Mitochondrial ryanodine receptor Type 1




Nitric oxide synthase


Oligomycin sensitivity conferring protein


Outer mitochondria membrane


Phenylarsine oxide


Phosphate carrier




Pyruvate dehydrogenase


Rapid mode of uptake


Reactive nitrogen species


Reactive oxygen species






Sarco/endoplasmic reticulum Ca2+-ATPase


Sirtuin 3


Spastic paraplegia 7


Superoxide dismutase 2


Tricarboxylic acid


Voltage dependent anion channel




We would like to acknowledge Jennifer Wilson, for her constructive comments as well as our funding from the National Instute of Health: 2R01HL093671, 1R01HL122124, & 1RO1114760 to S-S. Sheu; T32AA007463 to J. Hoek & S. Hurst, and R01AA018873 to J.Hoek.


  1. Abramov AY, Fraley C, Diao CT, et al. (2007) Targeted polyphosphatase expression alters mitochondrial metabolism and inhibits calcium-dependent cell death. Proc Natl Acad Sci 104:18091–18096. doi: 10.1073/pnas.0708959104 CrossRefGoogle Scholar
  2. Alavian KN, Beutner G, Lazrove E, et al. (2014) An uncoupling channel within the c-subunit ring of the F1FO ATP synthase is the mitochondrial permeability transition pore. Proc Natl Acad Sci 111:10580–10585. doi: 10.1073/pnas.1401591111 CrossRefGoogle Scholar
  3. Alderton WK, Cooper CE, Knowles RG (2001) Nitric oxide synthases: structure, function and inhibition. Biochem J 357:593–615CrossRefGoogle Scholar
  4. Altschuld RA, Hohl CM, Castillo LC, et al. (1992) Cyclosporin inhibits mitochondrial calcium efflux in isolated adult rat ventricular cardiomyocytes. Am J Phys 262:H1699–H1704Google Scholar
  5. Arakaki N, Ueyama Y, Hirose M, et al. (2001) Stoichiometry of subunit e in rat liver mitochondrial H(+)-ATP synthase and membrane topology of its putative Ca(2+)-dependent regulatory region. Biochim Biophys Acta 1504:220–228CrossRefGoogle Scholar
  6. Arrington DD, Van Vleet TR, Schnellmann RG (2006) Calpain 10: a mitochondrial calpain and its role in calcium-induced mitochondrial dysfunction. Am J Physiol, Cell Physiol 291:C1159–C1171. doi: 10.1152/ajpcell.00207.2006 CrossRefGoogle Scholar
  7. Baines CP, Kaiser RA, Purcell NH, et al. (2005) Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature 434:658–662. doi: 10.1038/nature03434 CrossRefGoogle Scholar
  8. Baines CP, Kaiser RA, Sheiko T, et al. (2007) Voltage-dependent anion channels are dispensable for mitochondrial-dependent cell death. Nat Cell Biol 9:550–555. doi: 10.1038/ncb1575 CrossRefGoogle Scholar
  9. Bao H, Ge Y, Zhuang S, et al. (2012) Inhibition of glycogen synthase kinase-3β prevents NSAID-induced acute kidney injury. Kidney Int 81:662–673. doi: 10.1038/ki.2011.443 CrossRefGoogle Scholar
  10. Barsukova A, Komarov A, Hajnóczky G, et al. (2011) Activation of the mitochondrial permeability transition pore modulates Ca2+ responses to physiological stimuli in adult neurons. Eur J Neurosci 33:831–842. doi: 10.1111/j.1460-9568.2010.07576.x CrossRefGoogle Scholar
  11. Basso E, Fante L, Fowlkes J, et al. (2005) Properties of the permeability transition pore in mitochondria devoid of cyclophilin D. J Biol Chem 280:18558–18561. doi: 10.1074/jbc.C500089200 CrossRefGoogle Scholar
  12. Basso E, Petronilli V, Forte MA, Bernardi P (2008) Phosphate is essential for inhibition of the mitochondrial permeability transition pore by cyclosporin a and by cyclophilin D ablation. J Biol Chem 283:26307–26311. doi: 10.1074/jbc.C800132200 CrossRefGoogle Scholar
  13. Baughman JM, Perocchi F, Girgis HS, et al. (2011) Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter. Nature 476:341–345. doi: 10.1038/nature10234 CrossRefGoogle Scholar
  14. Bergeaud M, Mathieu L, Guillaume A, et al. (2013) Mitochondrial p53 mediates a transcription-independent regulation of cell respiration and interacts with the mitochondrial F1F0-ATP synthase. Cell Cycle 12:2781–2793. doi: 10.4161/cc.25870 CrossRefGoogle Scholar
  15. Bernardi P, Vassanelli S, Veronese P, et al. (1992) Modulation of the mitochondrial permeability transition pore. Effect of protons and divalent cations J Biol Chem 267:2934–2939Google Scholar
  16. Bernardi P, Veronese P, Petronilli V (1993) Modulation of the mitochondrial cyclosporin A-sensitive permeability transition pore. I. Evidence for two separate Me2+ binding sites with opposing effects on the pore open probability. J Biol Chem 268:1005–1010Google Scholar
  17. Bernardi P, Rasola A, Forte M, Lippe G (2015) The mitochondrial permeability transition pore: channel formation by F-ATP synthase, integration in signal transduction, and role in pathophysiology. Physiol Rev 95:1111–1155. doi: 10.1152/physrev.00001.2015 CrossRefGoogle Scholar
  18. Beutner G (2001) Identification of a ryanodine receptor in rat heart mitochondria. J Biol Chem 276:21482–21488. doi: 10.1074/jbc.M101486200 CrossRefGoogle Scholar
  19. Beutner G, Ruck A, Riede B, et al. (1996) Complexes between kinases, mitochondrial porin and adenylate translocator in rat brain resemble the permeability transition pore. FEBS Lett 396:189–195CrossRefGoogle Scholar
  20. Bochaton T, Crola-Da-Silva C, Pillot B, et al. (2015) Inhibition of myocardial reperfusion injury by ischemic postconditioning requires sirtuin 3-mediated deacetylation of cyclophilin D. J Mol Cell Cardiol 84:61–69. doi: 10.1016/j.yjmcc.2015.03.017 CrossRefGoogle Scholar
  21. Bonora M, Pinton P (2014) The mitochondrial permeability transition pore and cancer: molecular mechanisms involved in cell death. Front Oncol 4:302. doi: 10.3389/fonc.2014.00302 CrossRefGoogle Scholar
  22. Bonora M, Bononi A, De Marchi E, et al. (2013) Role of the c subunit of the FO ATP synthase in mitochondrial permeability transition. Cell Cycle 12:674–683. doi: 10.4161/cc.23599 CrossRefGoogle Scholar
  23. Breckenridge DG, Stojanovic M, Marcellus RC, Shore GC (2003) Caspase cleavage product of BAP31 induces mitochondrial fission through endoplasmic reticulum calcium signals, enhancing cytochrome c release to the cytosol. J Cell Biol 160:1115–1127. doi: 10.1083/jcb.200212059 CrossRefGoogle Scholar
  24. Brookes PS (2004a) Calcium, ATP, and ROS: a mitochondrial love-hate triangle. AJP: Cell Physiology 287:C817–C833. doi: 10.1152/ajpcell.00139.2004 Google Scholar
  25. Brookes PS (2004b) Mitochondrial nitric oxide synthase. MITOCH 3:187–204. doi: 10.1016/j.mito.2003.10.001 CrossRefGoogle Scholar
  26. Brookes P, Darley-Usmar VM (2002) Hypothesis: the mitochondrial NO(*) signaling pathway, and the transduction of nitrosative to oxidative cell signals: an alternative function for cytochrome C oxidase. Free Radic Biol Med 32:370–374CrossRefGoogle Scholar
  27. Carraro M, Giorgio V, Ileikyte J, et al (2014) Channel Formation by Yeast F-ATP Synthase and the Role of Dimerization in the Mitochondrial Permeability Transition. Journal of Biological Chemistry 289:jbc.C114.559633–15985. doi:  10.1074/jbc.C114.559633
  28. Chalmers S, Nicholls DG (2003) The relationship between free and Total calcium concentrations in the matrix of liver and brain mitochondria. J Biol Chem 278:19062–19070. doi: 10.1074/jbc.M212661200 CrossRefGoogle Scholar
  29. Chen Q, Lesnefsky EJ (2015) Heart mitochondria and calpain 1: location, function, and targets. BBA - Molecular Basis of Disease:1–34. doi: 10.1016/j.bbadis.2015.08.004
  30. Chen M, Won D-J, Krajewski S, Gottlieb RA (2002) Calpain and mitochondria in ischemia/reperfusion injury. J Biol Chem 277:29181–29186. doi: 10.1074/jbc.M204951200 CrossRefGoogle Scholar
  31. Chen Q, Paillard M, Gomez L, et al. (2011) Activation of mitochondrial μ-calpain increases AIF cleavage in cardiac mitochondria during ischemia–reperfusion. Biochem Biophys Res Commun 415:533–538. doi: 10.1016/j.bbrc.2011.10.037 CrossRefGoogle Scholar
  32. Chen B, Xu M, Zhang H, et al. (2013) Cisplatin-induced non-apoptotic death of pancreatic cancer cells requires mitochondrial cyclophilin-D-p53 signaling. Biochem Biophys Res Commun 437:526–531. doi: 10.1016/j.bbrc.2013.06.103 CrossRefGoogle Scholar
  33. Chiara F, Castellaro D, Marin O, et al. (2008) Hexokinase II detachment from mitochondria triggers apoptosis through the permeability transition pore independent of voltage-dependent anion channels. PLoS One 3:e1852. doi: 10.1371/journal.pone.0001852 CrossRefGoogle Scholar
  34. Cho T-H, Aguettaz P, Campuzano O, et al. (2013) Pre- and post-treatment with cyclosporine a in a rat model of transient focal cerebral ischaemia with multimodal MRI screening. Int J Stroke 8:669–674. doi: 10.1111/j.1747-4949.2012.00849.x CrossRefGoogle Scholar
  35. Clarke SJ, Khaliulin I, Das M, et al. (2008) Inhibition of mitochondrial permeability transition pore opening by ischemic preconditioning is probably mediated by reduction of oxidative stress rather than mitochondrial protein phosphorylation. Circ Res 102:1082–1090. doi: 10.1161/CIRCRESAHA.107.167072 CrossRefGoogle Scholar
  36. Claros MG, Vincens P (1996) Computational method to predict mitochondrially imported proteins and their targeting sequences. Eur J Biochem 241:779–786CrossRefGoogle Scholar
  37. Connern CP, Halestrap AP (1994) Recruitment of mitochondrial cyclophilin to the mitochondrial inner membrane under conditions of oxidative stress that enhance the opening of a calcium-sensitive non-specific channel. Biochem J 302(Pt 2):321–324CrossRefGoogle Scholar
  38. Cribbs JT, Strack S (2007) Reversible phosphorylation of Drp1 by cyclic AMP-dependent protein kinase and calcineurin regulates mitochondrial fission and cell death. EMBO Rep 8:939–944. doi: 10.1038/sj.embor.7401062 CrossRefGoogle Scholar
  39. Crofts AR, Chappell JB (1965) Calcium ion accumulation and volume changes of isolated liver mitochondria. Reversal of calcium ion-induced swelling. Biochem J 95:387–392CrossRefGoogle Scholar
  40. Crompton M, Costi A (1988) Kinetic evidence for a heart mitochondrial pore activated by Ca2+, inorganic phosphate and oxidative stress. A potential mechanism for mitochondrial dysfunction during cellular Ca2+ overload. Eur J Biochem 178:489–501CrossRefGoogle Scholar
  41. Crompton M, Künzi M, Carafoli E (1977) The calcium-induced and sodium-induced effluxes of calcium from heart mitochondria. Evidence for a sodium-calcium carrier. Eur J Biochem 79:549–558CrossRefGoogle Scholar
  42. Crompton M, Ellinger H, Costi A (1988) Inhibition by cyclosporin a of a Ca2 + −dependent pore in heart mitochondria activated by inorganic phosphate and oxidative stress. Biochem J 255:357–360Google Scholar
  43. Csordás G, Golenár T, Seifert EL, et al. (2013) MICU1 controls both the threshold and cooperative Activationof the mitochondrial Ca. Cell Metab 17:976–987. doi: 10.1016/j.cmet.2013.04.020 CrossRefGoogle Scholar
  44. Das AM, Harris DA (1990) Control of mitochondrial ATP synthase in heart cells: inactive to active transitions caused by beating or positive inotropic agents. Cardiovasc Res 24:411–417CrossRefGoogle Scholar
  45. De Marchi E, Bonora M, Giorgi C, Pinton P (2014) The mitochondrial permeability transition pore is a dispensable element for mitochondrial calcium efflux. Cell Calcium 56:1–13. doi: 10.1016/j.ceca.2014.03.004 CrossRefGoogle Scholar
  46. De Stefani D, Raffaello A, Teardo E, et al. (2012) A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter. Nature 476:336–340. doi: 10.1038/nature10230 CrossRefGoogle Scholar
  47. De Stefani D, Rizzuto R, Pozzan T (2013) Enjoy the trip: calcium in mitochondria back and forth. Annu Rev Biochem 85:annurev–biochem–060614–034216–32. doi:  10.1146/annurev-biochem-060614-034216
  48. Ding Y, Fang H, Shang W, et al. (2015) Mitoflash altered by metabolic stress in insulin-resistant skeletal muscle. J Mol Med 93:1119–1130. doi: 10.1007/s00109-015-1278-y CrossRefGoogle Scholar
  49. Du H, Guo L, Zhang W, et al. (2011) Cyclophilin D deficiency improves mitochondrial function and learning/memory in aging Alzheimer disease mouse model. Neurobiol Aging 32:398–406. doi: 10.1016/j.neurobiolaging.2009.03.003 CrossRefGoogle Scholar
  50. Elrod JW, Wong R, Mishra S, et al. (2010) Cyclophilin D controls mitochondrial pore-dependent Ca(2+) exchange, metabolic flexibility, and propensity for heart failure in mice. J Clin Invest 120:3680–3687. doi: 10.1172/JCI43171 CrossRefGoogle Scholar
  51. Feldkamp T, Park JS, Pasupulati R, et al. (2009) Regulation of the mitochondrial permeability transition in kidney proximal tubules and its alteration during hypoxia-reoxygenation. Am J Physiol Renal Physiol 297:F1632–F1646. doi: 10.1152/ajprenal.00422.2009 CrossRefGoogle Scholar
  52. Feng J, Lucchinetti E, Ahuja P, et al. (2005) Isoflurane postconditioning prevents opening of the mitochondrial permeability transition pore through inhibition of glycogen synthase kinase 3beta. Anesthesiology 103:987–995CrossRefGoogle Scholar
  53. Feng Y, Xia Y, Yu G, et al. (2013) Cleavage of GSK-3β by calpain counteracts the inhibitory effect of Ser9 phosphorylation on GSK-3β activity induced by H 2O 2. J Neurochem 126:234–242. doi: 10.1111/jnc.12285 CrossRefGoogle Scholar
  54. Feniouk BA, Yoshida M (2008) Regulatory mechanisms of proton-translocating F(O)F (1)-ATP synthase. Results Probl Cell Differ 45:279–308. doi: 10.1007/400_2007_043 CrossRefGoogle Scholar
  55. Fournier N, Ducet G, Crevat A (1987) Action of cyclosporine on mitochondrial calcium fluxes. J Bioenerg Biomembr 19:297–303CrossRefGoogle Scholar
  56. Gelb BD, Adams V, Jones SN, et al. (1992) Targeting of hexokinase 1 to liver and hepatoma mitochondria. Proc Natl Acad Sci U S A 89:202–206CrossRefGoogle Scholar
  57. Ghafourifar P, Cadenas E (2005) Mitochondrial nitric oxide synthase. Trends Pharmacol Sci 26:190–195. doi: 10.1016/ CrossRefGoogle Scholar
  58. Gill RS, Manouchehri N, Lee T-F, et al. (2012) Cyclosporine treatment improves mesenteric perfusion and attenuates necrotizing enterocolitis (NEC)-like intestinal injury in asphyxiated newborn piglets during reoxygenation. Intensive Care Med 38:482–490. doi: 10.1007/s00134-011-2436-5 CrossRefGoogle Scholar
  59. Giorgio V, Bisetto E, Soriano ME, et al. (2009) Cyclophilin D modulates mitochondrial F0F1-ATP synthase by interacting with the lateral stalk of the complex. J Biol Chem 284:33982–33988. doi: 10.1074/jbc.M109.020115 CrossRefGoogle Scholar
  60. Giorgio V, Stockum von S, Antoniel M, et al. (2013) Dimers of mitochondrial ATP synthase form the permeability transition pore. Proc Natl Acad Sci 110:5887–5892. doi: 10.1073/pnas.1217823110 CrossRefGoogle Scholar
  61. Gomez L, Paillard M, Thibault H, et al. (2008) Inhibition of GSK3beta by postconditioning is required to prevent opening of the mitochondrial permeability transition pore during reperfusion. Circulation 117:2761–2768. doi: 10.1161/CIRCULATIONAHA.107.755066 CrossRefGoogle Scholar
  62. Goñi-Oliver P, Lucas JJ, Avila J, Hernandez F (2007) N-terminal cleavage of GSK-3 by calpain: a new form of GSK-3 regulation. J Biol Chem 282:22406–22413. doi: 10.1074/jbc.M702793200 CrossRefGoogle Scholar
  63. Grijalba MT, Vercesi AE, Schreier S (1999) Ca2 + −induced increased lipid packing and domain formation in submitochondrial particles. A possible early step in the mechanism of Ca2 + −stimulated generation of reactive oxygen species by the respiratory chain. Biochemistry 38:13279–13287. doi: 10.1021/bi9828674 CrossRefGoogle Scholar
  64. Gunter TE, Pfeiffer DR (1990) Mechanisms by which mitochondria transport calcium. Am J Phys 258:C755–C786Google Scholar
  65. Gutiérrez-Aguilar M, Douglas DL, Gibson AK, et al. (2014) Genetic manipulation of the cardiac mitochondrial phosphate carrier does not affect permeability transition. J Mol Cell Cardiol 72:316–325. doi: 10.1016/j.yjmcc.2014.04.008 CrossRefGoogle Scholar
  66. Hackenbrock CR, Caplan AI (1969) Ion-induced ultrastructural transformations in isolated mitochondria. The energized uptake of calcium The Journal of Cell Biology 42:221–234Google Scholar
  67. Hafner AV, Dai J, Gomes AP, et al. (2010) Regulation of the mPTP by SIRT3-mediated deacetylation of CypD at lysine 166 suppresses age-related cardiac hypertrophy. Aging (Albany NY) 2:914–923CrossRefGoogle Scholar
  68. Halestrap AP (1991) Calcium-dependent opening of a non-specific pore in the mitochondrial inner membrane is inhibited at pH values below 7. Implications for the protective effect of low pH against chemical and hypoxic cell damage. Biochem J 278(Pt 3):715–719CrossRefGoogle Scholar
  69. Halestrap AP (2010) A pore way to die: the role of mitochondria in reperfusion injury and cardioprotection. Biochem Soc Trans 38:841–860CrossRefGoogle Scholar
  70. Halestrap AP, Davidson AM (1990) Inhibition of Ca2(+)-induced large-amplitude swelling of liver and heart mitochondria by cyclosporin is probably caused by the inhibitor binding to mitochondrial-matrix peptidyl-prolyl cis-trans isomerase and preventing it interacting with the adenine nucleotide translocase. Biochem J 268:153–160CrossRefGoogle Scholar
  71. Halestrap AP, Richardson AP (2015) The mitochondrial permeability transition: a current perspective on its identity and role in ischaemia/reperfusion injury. J Mol Cell Cardiol 78:129–141. doi: 10.1016/j.yjmcc.2014.08.018 CrossRefGoogle Scholar
  72. Halestrap AP, Woodfield KY, Connern CP (1997) Oxidative stress, thiol reagents, and membrane potential modulate the mitochondrial permeability transition by affecting nucleotide binding to the adenine nucleotide translocase. J Biol Chem 272:3346–3354CrossRefGoogle Scholar
  73. Hausenloy D, Wynne A, Duchen M, Yellon D (2004) Transient mitochondrial permeability transition pore opening mediates preconditioning-induced protection. Circulation 109:1714–1717. doi: 10.1161/01.CIR.0000126294.81407.7D CrossRefGoogle Scholar
  74. Haworth RA, Hunter DR (1979) The Ca2 + −induced membrane transition in mitochondria. II. Nature of the Ca2+ trigger site. Arch Biochem Biophys 195:460–467CrossRefGoogle Scholar
  75. Haworth RA, Hunter DR (2000) Control of the mitochondrial permeability transition pore by high-affinity ADP binding at the ADP/ATP translocase in permeabilized mitochondria. J Bioenerg Biomembr 32:91–96CrossRefGoogle Scholar
  76. Hernando V, Inserte J, Sartório CL, et al. (2010) Calpain translocation and activation as pharmacological targets during myocardial ischemia/reperfusion. J Mol Cell Cardiol 49:271–279. doi: 10.1016/j.yjmcc.2010.02.024 CrossRefGoogle Scholar
  77. Hoffmann B, Stöckl A, Schlame M, et al. (1994) The reconstituted ADP/ATP carrier activity has an absolute requirement for cardiolipin as shown in cysteine mutants. J Biol Chem 269:1940–1944Google Scholar
  78. Hom JR, Gewandter JS, Michael L, et al. (2007) Thapsigargin induces biphasic fragmentation of mitochondria through calcium-mediated mitochondrial fission and apoptosis. J Cell Physiol 212:498–508. doi: 10.1002/jcp.21051 CrossRefGoogle Scholar
  79. Hom J, Yu T, Yoon Y, et al. (2010) Regulation of mitochondrial fission by intracellular Ca2+ in rat ventricular myocytes. Biochim Biophys Acta 1797:913–921. doi: 10.1016/j.bbabio.2010.03.018 CrossRefGoogle Scholar
  80. Hom JR, Quintanilla RA, Hoffman DL, et al. (2011) The permeability transition pore controls cardiac mitochondrial maturation and myocyte differentiation. Dev Cell 21:469–478. doi: 10.1016/j.devcel.2011.08.008 CrossRefGoogle Scholar
  81. Hool LC, Corry B (2007) Redox control of calcium channels: from mechanisms to therapeutic opportunities. Antioxid Redox Signal 9:409–435. doi: 10.1089/ars.2006.1446 CrossRefGoogle Scholar
  82. Hubbard MJ, McHugh NJ (1996) Mitochondrial ATP synthase F1-beta-subunit is a calcium-binding protein. FEBS Lett 391:323–329CrossRefGoogle Scholar
  83. Hunter DR, Haworth RA (1979) The Ca2 + −induced membrane transition in mitochondria. I The protective mechanisms Archives of Biochemistry and Biophysics 195:453–459CrossRefGoogle Scholar
  84. Hunter DR, Haworth RA, Southard JH (1976) Relationship between configuration, function, and permeability in calcium-treated mitochondria. J Biol Chem 251:5069–5077Google Scholar
  85. Hurst S, Gomez L, Jhun B, et al (2015) Truncation of GSK-3β in Cardiac Mitochondria is the Master Switch of the mPTPGoogle Scholar
  86. Ichas F, Jouaville LS, Mazat JP (1997) Mitochondria are excitable organelles capable of generating and conveying electrical and calcium signals. Cell 89:1145–1153CrossRefGoogle Scholar
  87. Inoue T, Yoshida Y, Isaka Y, Tagawa K (1993) Isolation of mitochondrial cyclophilin from bovine heart. Biochem Biophys Res Commun 190:857–863. doi: 10.1006/bbrc.1993.1127 CrossRefGoogle Scholar
  88. Inserte J, Garcia-Dorado D, Hernando V, et al. (2006) Ischemic preconditioning prevents calpain-mediated impairment of Na+/K + −ATPase activity during early reperfusion. Cardiovasc Res 70:364–373. doi: 10.1016/j.cardiores.2006.02.017 CrossRefGoogle Scholar
  89. Inserte J, Barba I, Hernando V, Garcia-Dorado D (2009) Delayed recovery of intracellular acidosis during reperfusion prevents calpain activation and determines protection in postconditioned myocardium. Cardiovasc Res 81:116–122. doi: 10.1093/cvr/cvn260 CrossRefGoogle Scholar
  90. Javadov SA, Clarke S, Das M, et al. (2003) Ischaemic preconditioning inhibits opening of mitochondrial permeability transition pores in the reperfused rat heart. J Physiol 549:513–524. doi: 10.1113/jphysiol.2003.034231 CrossRefGoogle Scholar
  91. Jekabsone A, Ivanoviene L, Brown GC, Borutaite V (2003) Nitric oxide and calcium together inactivate mitochondrial complex I and induce cytochrome c release. J Mol Cell Cardiol 35:803–809CrossRefGoogle Scholar
  92. Jiang D, Zhao L, Clapham DE (2009) Genome-wide RNAi screen identifies Letm1 as a mitochondrial Ca2+/H+ antiporter. Science 326:144–147. doi: 10.1126/science.1175145 CrossRefGoogle Scholar
  93. Jin N, Yin X, Yu D, et al. (2015) Truncation and activation of GSK-3β by calpain I: a molecular mechanism links to tau hyperphosphorylation in Alzheimer's disease. Sci Rep 5:8187. doi: 10.1038/srep08187 CrossRefGoogle Scholar
  94. Johnson KM, Chen X, Boitano A, et al. (2005) Identification and validation of the mitochondrial F1F0-ATPase as the molecular target of the immunomodulatory benzodiazepine Bz-423. Chem Biol 12:485–496. doi: 10.1016/j.chembiol.2005.02.012 CrossRefGoogle Scholar
  95. Joiner M-LA, Koval OM, Li J, et al. (2012) CaMKII determines mitochondrial stress responses in heart. Nature 491:269–273. doi: 10.1038/nature11444 CrossRefGoogle Scholar
  96. Jou M-J (2011) Melatonin preserves the transient mitochondrial permeability transition for protection during mitochondrial Ca2+ stress in astrocyte. J Pineal Res 50:427–435. doi: 10.1111/j.1600-079X.2011.00861.x CrossRefGoogle Scholar
  97. Juhaszova M, Zorov DB, Kim S-H, et al. (2004) Glycogen synthase kinase-3beta mediates convergence of protection signaling to inhibit the mitochondrial permeability transition pore. J Clin Invest 113:1535–1549. doi: 10.1172/JCI19906 CrossRefGoogle Scholar
  98. Jung S, Yang H, Kim BS, et al. (2012) The immunosuppressant cyclosporin a inhibits recurrent seizures in an experimental model of temporal lobe epilepsy. Neurosci Lett 529:133–138. doi: 10.1016/j.neulet.2012.08.087 CrossRefGoogle Scholar
  99. Kadenbach B, Mende P, Kolbe HV, et al. (1982) The mitochondrial phosphate carrier has an essential requirement for cardiolipin. FEBS Lett 139:109–112CrossRefGoogle Scholar
  100. Kar P, Samanta K, Shaikh S, et al. (2010) Archives of biochemistry and biophysics. Arch Biochem Biophys 495:1–7. doi: 10.1016/ CrossRefGoogle Scholar
  101. Karch J, Molkentin JD (2012) Is p53 the long-sought molecular trigger for cyclophilin D-regulated mitochondrial permeability transition pore formation and necrosis? Circ Res 111:1258–1260. doi: 10.1161/CIRCRESAHA.112.280990 CrossRefGoogle Scholar
  102. Karch J, Kwong JQ, Burr AR, et al. (2013) Bax and Bak function as the outer membrane component of the mitochondrial permeability pore in regulating necrotic cell death in mice. Elife 2:e00772. doi: 10.7554/eLife.00772 CrossRefGoogle Scholar
  103. Khalil PN, Neuhof C, Huss R, et al. (2005) Calpain inhibition reduces infarct size and improves global hemodynamics and left ventricular contractility in a porcine myocardial ischemia/reperfusion model. Eur J Pharmacol 528:124–131. doi: 10.1016/j.ejphar.2005.10.032 CrossRefGoogle Scholar
  104. Khaliulin I, Schwalb H, Wang P, et al. (2004) Preconditioning improves postischemic mitochondrial function and diminishes oxidation of mitochondrial proteins. Free Radic Biol Med 37:1–9. doi: 10.1016/j.freeradbiomed.2004.04.017 CrossRefGoogle Scholar
  105. Khaliulin I, Clarke SJ, Lin H, et al. (2007) Temperature preconditioning of isolated rat hearts--a potent cardioprotective mechanism involving a reduction in oxidative stress and inhibition of the mitochondrial permeability transition pore. J Physiol 581:1147–1161. doi: 10.1113/jphysiol.2007.130369 CrossRefGoogle Scholar
  106. Kinnally KW, Campo ML, Tedeschi H (1989) Mitochondrial channel activity studied by patch-clamping mitoplasts. J Bioenerg Biomembr 21:497–506CrossRefGoogle Scholar
  107. Kinnally KW, Zorov DB, Antonenko YN, et al. (1993) Mitochondrial benzodiazepine receptor linked to inner membrane ion channels by nanomolar actions of ligands. Proc Natl Acad Sci U S A 90:1374–1378CrossRefGoogle Scholar
  108. Kinnally KW, Peixoto PM, Ryu S-Y, Dejean LM (2011) Is mPTP the gatekeeper for necrosis, apoptosis, or both? Biochim Biophys Acta 1813:616–622. doi: 10.1016/j.bbamcr.2010.09.013 CrossRefGoogle Scholar
  109. Klöhn P-C, Soriano ME, Irwin W, et al. (2003) Early resistance to cell death and to onset of the mitochondrial permeability transition during hepatocarcinogenesis with 2-acetylaminofluorene. Proc Natl Acad Sci U S A 100:10014–10019. doi: 10.1073/pnas.1633614100 CrossRefGoogle Scholar
  110. Kohr MJ, Aponte AM, Sun J, et al. (2011a) Characterization of potential S-nitrosylation sites in the myocardium. AJP: Heart and Circulatory Physiology 300:H1327–H1335. doi: 10.1152/ajpheart.00997.2010 Google Scholar
  111. Kohr MJ, Sun J, Aponte A, et al. (2011b) Simultaneous measurement of protein oxidation and S-nitrosylation during preconditioning and ischemia/reperfusion injury with resin-assisted capture. Circ Res 108:418–426. doi: 10.1161/CIRCRESAHA.110.232173 CrossRefGoogle Scholar
  112. Kokoszka JE, Waymire KG, Levy SE, et al. (2004) The ADP/ATP translocator is not essential for the mitochondrial permeability transition pore. Nature 427:461–465. doi: 10.1038/nature02229 CrossRefGoogle Scholar
  113. Konukoglu D, Taşci I, Cetinkale O (1998) Effects of cyclosporin a and ibuprofen on liver ischemia-reperfusion injury in the rat. Clin Chim Acta 275:1–8CrossRefGoogle Scholar
  114. Kwong JQ, Molkentin JD (2015) Physiological and pathological roles of the mitochondrial permeability transition pore in the heart. Cell Metab 21:206–214. doi: 10.1016/j.cmet.2014.12.001 CrossRefGoogle Scholar
  115. Kwong JQ, Davis J, Baines CP, et al. (2014) Genetic deletion of the mitochondrial phosphate carrier desensitizes the mitochondrial permeability transition pore and causes cardiomyopathy. Cell Death Differ 21:1209–1217. doi: 10.1038/cdd.2014.36 CrossRefGoogle Scholar
  116. Lacza Z, Pankotai E, Csordás A, et al. (2006) Mitochondrial NO and reactive nitrogen species production: does mtNOS exist? Nitric Oxide 14:162–168. doi: 10.1016/j.niox.2005.05.011 CrossRefGoogle Scholar
  117. Lehninger AL (1959) Reversal of various types of mitochondrial swelling by adenosine triphosphate. J Biol Chem 234:2465–2471Google Scholar
  118. Leung AWC, Varanyuwatana P, Halestrap AP (2008) The mitochondrial phosphate carrier interacts with cyclophilin D and may play a key role in the permeability transition. J Biol Chem 283:26312–26323. doi: 10.1074/jbc.M805235200 CrossRefGoogle Scholar
  119. Linard D, Kandlbinder A, Degand H, et al. (2009) Redox characterization of human cyclophilin D: identification of a new mammalian mitochondrial redox sensor? Arch Biochem Biophys 491:39–45. doi: 10.1016/ CrossRefGoogle Scholar
  120. Lu X, Kwong J, Molkentin JD, Bers DM (2015) Individual Cardiac Mitochondria Undergo Rare Transient Permeability Transition Pore Openings. Circ Res CIRCRESAHA.115.308093–16. doi:  10.1161/CIRCRESAHA.115.308093
  121. Luongo TS, Lambert JP, Yuan A, et al (2015) The mitochondrial calcium uniporter matches energetic supply with cardiac workload during stress and modulates permeability transition. CellReports 12:23–34. doi:  10.1016/j.celrep.2015.06.017
  122. Ma S, Liu S, Huang Q, et al. (2012) Site-specific phosphorylation protects glycogen synthase kinase-3 from calpain-mediated truncation of its N and C termini. J Biol Chem 287:22521–22532. doi: 10.1074/jbc.M111.321349 CrossRefGoogle Scholar
  123. Maekawa A, Lee J-K, Nagaya T, et al. (2003) Overexpression of calpastatin by gene transfer prevents troponin I degradation and ameliorates contractile dysfunction in rat hearts subjected to ischemia/reperfusion. J Mol Cell Cardiol 35:1277–1284CrossRefGoogle Scholar
  124. Mallilankaraman K, Cárdenas C, Doonan PJ, et al. (2012) MCUR1 is an essential component of mitochondrial Ca2+ uptake that regulates cellular metabolism. Nat Cell Biol 14:1336–1343. doi: 10.1038/ncb2622 CrossRefGoogle Scholar
  125. Markevich NI, Hoek JB (2015) Computational modeling analysis of mitochondrial superoxide production under varying substrate conditions and upon inhibition of different segments of the electron transport chain. Biochim Biophys Acta 1847:656–679. doi: 10.1016/j.bbabio.2015.04.005 CrossRefGoogle Scholar
  126. Martin LJ, Fancelli D, Wong M, et al. (2014a) GNX-4728, a novel small molecule drug inhibitor of mitochondrial permeability transition, is therapeutic in a mouse model of amyotrophic lateral sclerosis. Front Cell Neurosci 8:433. doi: 10.3389/fncel.2014.00433 Google Scholar
  127. Martin LJ, Semenkow S, Hanaford A, Wong M (2014b) Mitochondrial permeability transition pore regulates Parkinson's disease development in mutant α-synuclein transgenic mice. Neurobiol Aging 35:1132–1152. doi: 10.1016/j.neurobiolaging.2013.11.008 CrossRefGoogle Scholar
  128. Marzo I, Brenner C, Zamzami N, et al. (1998) The permeability transition pore complex: a target for apoptosis regulation by caspases and bcl-2-related proteins. J Exp Med 187:1261–1271CrossRefGoogle Scholar
  129. Massari S, Azzone GF (1972) The equivalent pore radius of intact and damaged mitochondria and the mechanism of active shrinkage. Biochim Biophys Acta 283:23–29CrossRefGoogle Scholar
  130. McCormack JG, Denton RM (1989) The role of Ca2+ ions in the regulation of intramitochondrial metabolism and energy production in rat heart. Mol Cell Biochem 89:121–125Google Scholar
  131. McCormack JG, Halestrap AP, Denton RM (1990) Role of calcium ions in regulation of mammalian intramitochondrial metabolism. Physiol Rev 70:391–425Google Scholar
  132. McEnery MW, Snowman AM, Trifiletti RR, Snyder SH (1992) Isolation of the mitochondrial benzodiazepine receptor: association with the voltage-dependent anion channel and the adenine nucleotide carrier. Proc Natl Acad Sci U S A 89:3170–3174CrossRefGoogle Scholar
  133. Michels G, Khan IF, Endres-Becker J, et al. (2009) Regulation of the human cardiac mitochondrial Ca2+ uptake by 2 different voltage-gated Ca2+ channels. Circulation 119:2435–2443. doi: 10.1161/CIRCULATIONAHA.108.835389 CrossRefGoogle Scholar
  134. Miura T, Tanno M (2010) Mitochondria and GSK-3β in cardioprotection against ischemia/reperfusion injury. Cardiovasc Drugs Ther 24:255–263. doi: 10.1007/s10557-010-6234-z CrossRefGoogle Scholar
  135. Miyamoto S, Murphy AN, Brown JH (2008) Akt mediates mitochondrial protection in cardiomyocytes through phosphorylation of mitochondrial hexokinase-II. Cell Death Differ 15:521–529. doi: 10.1038/sj.cdd.4402285 CrossRefGoogle Scholar
  136. Mizuta K, Ohmori M, Miyashita F, et al. (1999) Effect of pretreatment with FTY720 and cyclosporin on ischaemia-reperfusion injury of the liver in rats. J Pharm Pharmacol 51:1423–1428CrossRefGoogle Scholar
  137. Moody BF, Calvert JW (2011) Emergent role of gasotransmitters in ischemia-reperfusion injury. Med Gas Res 1:3. doi: 10.1186/2045-9912-1-3 CrossRefGoogle Scholar
  138. Morciano G, Giorgi C, Bonora M, et al. (2015) Molecular identity of the mitochondrial permeability transition pore and its role in ischemia-reperfusion injury. J Mol Cell Cardiol 78:142–153. doi: 10.1016/j.yjmcc.2014.08.015 CrossRefGoogle Scholar
  139. Muller FL, Roberts AG, Bowman MK, Kramer DM (2003) Architecture of the Qo site of the cytochrome bc1 complex probed by superoxide production. Biochemistry 42:6493–6499. doi: 10.1021/bi0342160 CrossRefGoogle Scholar
  140. Nakagawa T, Shimizu S, Watanabe T, et al. (2005) Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature 434:652–658. doi: 10.1038/nature03317 CrossRefGoogle Scholar
  141. Nguyen TT, Stevens MV, Kohr M, et al. (2011) Cysteine 203 of cyclophilin D is critical for cyclophilin D activation of the mitochondrial permeability transition pore. J Biol Chem 286:40184–40192. doi: 10.1074/jbc.M111.243469 CrossRefGoogle Scholar
  142. Ni R, Zheng D, Xiong S, et al (2015) Mitochondrial calpain-1 disrupts ATP synthase and induces superoxide generation in type-1 diabetic hearts: a novel mechanism contributing to diabetic cardiomyopathy. Diabetes db150963. doi:  10.2337/db15-0963
  143. Nicholls DG, Chalmers S (2004) The integration of mitochondrial calcium transport and storage. J Bioenerg Biomembr 36:277–281. doi: 10.1023/B:JOBB.0000041753.52832.f3 CrossRefGoogle Scholar
  144. Nicolli A, Petronilli V, Bernardi P (1993) Modulation of the mitochondrial cyclosporin A-sensitive permeability transition pore by matrix pH. Evidence that the pore open-closed probability is regulated by reversible histidine protonation Biochemistry 32:4461–4465Google Scholar
  145. Novgorodov SA, Gudz TI, Brierley GP, Pfeiffer DR (1994) Magnesium ion modulates the sensitivity of the mitochondrial permeability transition pore to cyclosporin a and ADP. Arch Biochem Biophys 311:219–228CrossRefGoogle Scholar
  146. Oess S, Icking A, Fulton D, et al. (2006) Subcellular targeting and trafficking of nitric oxide synthases. Biochem J 396:401–409. doi: 10.1042/BJ20060321 CrossRefGoogle Scholar
  147. Ong S-B, Subrayan S, Lim SY, et al. (2010) Inhibiting mitochondrial fission protects the heart against ischemia/reperfusion injury. Circulation 121:2012–2022. doi: 10.1161/CIRCULATIONAHA.109.906610 CrossRefGoogle Scholar
  148. Ott M, Robertson JD, Gogvadze V, et al. (2002) Cytochrome c release from mitochondria proceeds by a two-step process. Proc Natl Acad Sci U S A 99:1259–1263. doi: 10.1073/pnas.241655498 CrossRefGoogle Scholar
  149. O-Uchi J, Jhun BS, Xu S, et al. (2014a) Adrenergic signaling regulates mitochondrial Ca2+ uptake through Pyk2-dependent tyrosine phosphorylation of the mitochondrial Ca2+ uniporter. Antioxid Redox Signal 21:863–879. doi: 10.1089/ars.2013.5394 CrossRefGoogle Scholar
  150. O-Uchi J, Ryu S-Y, Jhun BS, et al. (2014b) Mitochondrial ion channels/transporters as sensors and regulators of cellular redox signaling. Antioxid Redox Signal 21:987–1006. doi: 10.1089/ars.2013.5681 CrossRefGoogle Scholar
  151. Out TA, Kemp A, Souverijn JH (1971) The effect of bongkrekic acid on the Ca 2+ − stimulated oxidation in rat-liver mitochondria and its relation to the efflux of intramitochondrial adenine nucleotides. Biochim Biophys Acta 245:299–304CrossRefGoogle Scholar
  152. Ozaki T, Tomita H, Tamai M, Ishiguro S-I (2007) Characteristics of mitochondrial calpains. J Biochem 142:365–376. doi: 10.1093/jb/mvm143 CrossRefGoogle Scholar
  153. Ozaki T, Yamashita T, Ishiguro S-I (2009) Mitochondrial m-calpain plays a role in the release of truncated apoptosis-inducing factor from the mitochondria. Biochim Biophys Acta 1793:1848–1859. doi: 10.1016/j.bbamcr.2009.10.002 CrossRefGoogle Scholar
  154. Packer MA, Scarlett JL, Martin SW, Murphy MP (1997) Induction of the mitochondrial permeability transition by peroxynitrite. Biochem Soc Trans 25:909–914CrossRefGoogle Scholar
  155. Palty R, Silverman WF, Hershfinkel M, et al. (2010) NCLX is an essential component of mitochondrial Na+/Ca2+ exchange. Proc Natl Acad Sci 107:436–441. doi: 10.1073/pnas.0908099107 CrossRefGoogle Scholar
  156. Park JS, Pasupulati R, Feldkamp T, et al. (2011) Cyclophilin D and the mitochondrial permeability transition in kidney proximal tubules after hypoxic and ischemic injury. Am J Physiol Renal Physiol 301:F134–F150. doi: 10.1152/ajprenal.00033.2011 CrossRefGoogle Scholar
  157. Pasdois P, Parker JE, Griffiths EJ, Halestrap AP (2011) The role of oxidized cytochrome c in regulating mitochondrial reactive oxygen species production and its perturbation in ischaemia. Biochem J 436:493–505. doi: 10.1042/BJ20101957 CrossRefGoogle Scholar
  158. Pasdois P, Parker JE, Halestrap AP (2013) Extent of mitochondrial hexokinase II dissociation during ischemia correlates with mitochondrial cytochrome c release, reactive oxygen species production, and infarct size on reperfusion. J Am Heart Assoc 2:e005645–e005645. doi: 10.1161/JAHA.112.005645 Google Scholar
  159. Pastorino JG (2005) Activation of glycogen synthase kinase 3 disrupts the binding of hexokinase II to mitochondria by phosphorylating voltage-dependent Anion Channel and potentiates chemotherapy-induced cytotoxicity. Cancer Res 65:10545–10554. doi: 10.1158/0008-5472.CAN-05-1925 CrossRefGoogle Scholar
  160. Pastorino JG, Hoek JB (2003) Hexokinase II: the integration of energy metabolism and control of apoptosis. Curr Med Chem 10:1535–1551CrossRefGoogle Scholar
  161. Pavlov E, Zakharian E, Bladen C, et al. (2005) A large, voltage-dependent channel, isolated from mitochondria by water-free chloroform extraction. Biophys J 88:2614–2625. doi: 10.1529/biophysj.104.057281 CrossRefGoogle Scholar
  162. Perez-Campo R, López-Torres M, Cadenas S, et al. (1998) The rate of free radical production as a determinant of the rate of aging: evidence from the comparative approach. J Comp Physiol B, Biochem Syst Environ Physiol 168:149–158CrossRefGoogle Scholar
  163. Pestana CR, Silva CHTP, Pardo-Andreu GL, et al. (2009) Ca(2+) binding to c-state of adenine nucleotide translocase (ANT)-surrounding cardiolipins enhances (ANT)-Cys(56) relative mobility: a computational-based mitochondrial permeability transition study. Biochim Biophys Acta 1787:176–182. doi: 10.1016/j.bbabio.2008.12.013 CrossRefGoogle Scholar
  164. Petronilli V, Szabo I, Zoratti M (1989) The inner mitochondrial membrane contains ion-conducting channels similar to those found in bacteria. FEBS Lett 259:137–143CrossRefGoogle Scholar
  165. Petronilli V, Miotto G, Canton M, et al. (1999) Transient and long-lasting openings of the mitochondrial permeability transition pore can be monitored directly in intact cells by changes in mitochondrial calcein fluorescence. Biophys J 76:725–734. doi: 10.1016/S0006-3495(99)77239-5 CrossRefGoogle Scholar
  166. Piot C, Croisille P, Staat P, et al. (2008) Effect of cyclosporine on reperfusion injury in acute myocardial infarction. N Engl J Med 359:473–481. doi: 10.1056/NEJMoa071142 CrossRefGoogle Scholar
  167. Pivovarova NB, Andrews SB (2010) Calcium-dependent mitochondrial function and dysfunction in neurons. FEBS J 277:3622–3636. doi: 10.1111/j.1742-4658.2010.07754.x CrossRefGoogle Scholar
  168. Pozzan T, Bragadin M, Azzone GF (1977) Disequilibrium between steady-state Ca2+ accumulation ratio and membrane potential in mitochondria. Pathway and role of Ca2+ efflux. Biochemistry 16:5618–5625CrossRefGoogle Scholar
  169. Quatresous E, Legrand C, Pouvreau S (2012) Mitochondria-targeted cpYFP: pH or superoxide sensor? The Journal of General Physiology 140:567–570. doi: 10.1085/jgp.201210863 CrossRefGoogle Scholar
  170. Quintanilla RA, Jin YN, Bernhardi von R, Johnson GVW (2013) Mitochondrial permeability transition pore induces mitochondria injury in Huntington disease. Mol Neurodegener 8:45. doi: 10.1186/1750-1326-8-45 CrossRefGoogle Scholar
  171. Radi R, Rodriguez M, Castro L, Telleri R (1994) Inhibition of mitochondrial electron transport by peroxynitrite. Arch Biochem Biophys 308:89–95. doi: 10.1006/abbi.1994.1013 CrossRefGoogle Scholar
  172. Rapizzi E, Pinton P, Szabadkai G, et al. (2002) Recombinant expression of the voltage-dependent anion channel enhances the transfer of Ca2+ microdomains to mitochondria. J Cell Biol 159:613–624. doi: 10.1083/jcb.200205091 CrossRefGoogle Scholar
  173. Rasola A, Sciacovelli M, Chiara F, et al. (2010) Activation of mitochondrial ERK protects cancer cells from death through inhibition of the permeability transition. Proc Natl Acad Sci 107:726–731. doi: 10.1073/pnas.0912742107 CrossRefGoogle Scholar
  174. Roberts DJ, Tan-Sah VP, Smith JM, Miyamoto S (2013) Akt phosphorylates HK-II at Thr-473 and increases mitochondrial HK-II association to protect cardiomyocytes. J Biol Chem 288:23798–23806. doi: 10.1074/jbc.M113.482026 CrossRefGoogle Scholar
  175. Rottenberg H, Marbach M (1990) Regulation of Ca 2+ transport in brain mitochondria. II. The mechanism of the adenine nucleotides enhancement of Ca 2+ uptake and retention. Biochimica et Biophysica Acta (BBA)- … 1016:87–98. doi:  10.1016/0005-2728(90)90010-2
  176. Sancak Y, Markhard AL, Kitami T, et al. (2013) EMRE is an essential component of the mitochondrial calcium uniporter complex. Science 342:1379–1382. doi: 10.1126/science.1242993 CrossRefGoogle Scholar
  177. Santos CXC, Anilkumar N, Zhang M, et al. (2011) Redox signaling in cardiac myocytes. Free Radic Biol Med 50:777–793. doi: 10.1016/j.freeradbiomed.2011.01.003 CrossRefGoogle Scholar
  178. Savino C, Pelicci P, Giorgio M (2013) The P66Shc/mitochondrial permeability transition pore pathway determines neurodegeneration. Oxidative Med Cell Longev 2013:719407–719407. doi: 10.1155/2013/719407 CrossRefGoogle Scholar
  179. Saxton NE, Barclay JL, Clouston AD, Fawcett J (2002) Cyclosporin a pretreatment in a rat model of warm ischaemia/reperfusion injury. J Hepatol 36:241–247CrossRefGoogle Scholar
  180. Scarlett JL, Packer MA, Porteous CM, Murphy MP (1996) Alterations to glutathione and nicotinamide nucleotides during the mitochondrial permeability transition induced by peroxynitrite. Biochem Pharmacol 52:1047–1055. doi: 10.1016/0006-2952(96)99426-5 CrossRefGoogle Scholar
  181. Schinzel AC, Takeuchi O, Huang Z, et al. (2005) Cyclophilin D is a component of mitochondrial permeability transition and mediates neuronal cell death after focal cerebral ischemia. Proc Natl Acad Sci U S A 102:12005–12010. doi: 10.1073/pnas.0505294102 CrossRefGoogle Scholar
  182. Schwarzländer M, Wagner S, Ermakova YG, et al. (2014) The “mitoflash” probe cpYFP does not respond to superoxide. Nature 514:E12–E14. doi: 10.1038/nature13858 CrossRefGoogle Scholar
  183. Shanmughapriya S, Rajan S, Hoffman NE, et al. (2015) SPG7 Is an Essential and Conserved Component of the Mitochondrial Permeability Transition Pore. Mol Cell:1–41. doi: 10.1016/j.molcel.2015.08.009
  184. Shao H, Chou J, Baty CJ, et al. (2006) Spatial localization of m-calpain to the plasma membrane by phosphoinositide biphosphate binding during epidermal growth factor receptor-mediated activation. Mol Cell Biol 26:5481–5496. doi: 10.1128/MCB.02243-05 CrossRefGoogle Scholar
  185. Shen E-Z, Song C-Q, Lin Y, et al. (2014) Mitoflash frequency in early adulthood predicts lifespan in Caenorhabditis elegans. Nature 508:128–132. doi: 10.1038/nature13012 CrossRefGoogle Scholar
  186. Shiga Y, Onodera H, Matsuo Y, Kogure K (1992) Cyclosporin a protects against ischemia-reperfusion injury in the brain. Brain Res 595:145–148CrossRefGoogle Scholar
  187. Shimizu S, Narita M, Tsujimoto Y (1999) Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature 399:483–487. doi: 10.1038/20959 CrossRefGoogle Scholar
  188. Shintani-Ishida K, Yoshida K-I (2015) Mitochondrial m-calpain opens the mitochondrial permeability transition pore in ischemia-reperfusion. Int J Cardiol 197:26–32. doi: 10.1016/j.ijcard.2015.06.010 CrossRefGoogle Scholar
  189. Shulga N, Pastorino JG (2010) Ethanol sensitizes mitochondria to the permeability transition by inhibiting deacetylation of cyclophilin-D mediated by sirtuin-3. J Cell Sci 123:4117–4127. doi: 10.1242/jcs.073502 CrossRefGoogle Scholar
  190. Shulga N, Wilson-Smith R, Pastorino JG (2010) Sirtuin-3 deacetylation of cyclophilin D induces dissociation of hexokinase II from the mitochondria. J Cell Sci 123:894–902. doi: 10.1242/jcs.061846 CrossRefGoogle Scholar
  191. Šileikytė J, Blachly-Dyson E, Sewell R, et al. (2014) Regulation of the mitochondrial permeability transition pore by the outer membrane does not involve the peripheral benzodiazepine receptor (translocator protein of 18 kDa (TSPO)). J Biol Chem 289:13769–13781. doi: 10.1074/jbc.M114.549634 CrossRefGoogle Scholar
  192. Soda Y, El-Assal ON, Yu L, Nagasue N (1999) Suppressed endothelin-1 production by FK506 and cyclosporin a in ischemia/reperfusion of rat small intestine. Surgery 125:23–32CrossRefGoogle Scholar
  193. Sohal RS, Allen RG (1985) Relationship between metabolic rate, free radicals, differentiation and aging: a unified theory. Basic Life Sci 35:75–104Google Scholar
  194. Solesio ME, Demirkhanyan L, Zakharian E, Pavlov EV (2016a) Contribution of inorganic polyphosphate towards regulation of mitochondrial free calcium. BBA - General Subjects 1860:1317–1325. doi: 10.1016/j.bbagen.2016.03.020 CrossRefGoogle Scholar
  195. Solesio ME, Elustondo PA, Zakharian E, Pavlov EV (2016b) Inorganic polyphosphate (polyP) as an activator and structural component of the mitochondrial permeability transition pore. Biochem Soc Trans 44:7–12. doi: 10.1042/BST20150206 CrossRefGoogle Scholar
  196. Song Y-H, Cho H, Ryu S-Y, et al. (2010) L-type Ca(2+) channel facilitation mediated by H(2)O(2)-induced activation of CaMKII in rat ventricular myocytes. J Mol Cell Cardiol 48:773–780. doi: 10.1016/j.yjmcc.2009.10.020 CrossRefGoogle Scholar
  197. Song Y-H, Choi E, Park S-H, et al. (2011) Sustained CaMKII activity mediates transient oxidative stress-induced long-term facilitation of L-type Ca(2+) current in cardiomyocytes. Free Radic Biol Med 51:1708–1716. doi: 10.1016/j.freeradbiomed.2011.07.022 CrossRefGoogle Scholar
  198. Sorimachi H, Ono Y (2012) Regulation and physiological roles of the calpain system in muscular disorders. Cardiovasc Res 96:11–22. doi: 10.1093/cvr/cvs157 CrossRefGoogle Scholar
  199. Sparagna GC, Gunter KK, Sheu SS, Gunter TE (1995) Mitochondrial calcium uptake from physiological-type pulses of calcium. A description of the rapid uptake mode J Biol Chem 270:27510–27515Google Scholar
  200. St-Pierre J, Buckingham JA, Roebuck SJ, Brand MD (2002) Topology of superoxide production from different sites in the mitochondrial electron transport chain. J Biol Chem 277:44784–44790. doi: 10.1074/jbc.M207217200 CrossRefGoogle Scholar
  201. Sun J, Murphy E (2010) Protein S-nitrosylation and cardioprotection. Circ Res 106:285–296. doi: 10.1161/CIRCRESAHA.109.209452 CrossRefGoogle Scholar
  202. Sun J, Steenbergen C, Murphy E (2006) S-nitrosylation: NO-related redox signaling to protect against oxidative stress. Antioxid Redox Signal 8:1693–1705. doi: 10.1089/ars.2006.8.1693 CrossRefGoogle Scholar
  203. Sun J, Morgan M, Shen R-F, et al. (2007) Preconditioning results in S-nitrosylation of proteins involved in regulation of mitochondrial energetics and calcium transport. Circ Res 101:1155–1163. doi: 10.1161/CIRCRESAHA.107.155879 CrossRefGoogle Scholar
  204. Sundberg TB, Swenson L, Wahl DR, et al. (2009) Apoptotic signaling activated by modulation of the F0F1-ATPase: implications for selective killing of autoimmune lymphocytes. J Pharmacol Exp Ther 331:437–444. doi: 10.1124/jpet.109.156422 CrossRefGoogle Scholar
  205. Szabo I, Zoratti M (1993) The mitochondrial permeability transition pore may comprise VDAC molecules. I. Binary structure and voltage dependence of the pore. FEBS Lett 330:201–205CrossRefGoogle Scholar
  206. Szabo I, Bernardi P, Zoratti M (1992) Modulation of the mitochondrial megachannel by divalent cations and protons. J Biol Chem 267:2940–2946Google Scholar
  207. Tan W, Colombini M (2007) VDAC closure increases calcium ion flux. Biochim Biophys Acta Biomembr 1768:2510–2515. doi: 10.1016/j.bbamem.2007.06.002 CrossRefGoogle Scholar
  208. Tanno M, Kuno A, Ishikawa S, et al (2014) Translocation of GSK-3β, a Trigger of Permeability Transition, Is Kinase Activity-dependent and Mediated by Interaction with VDAC2. J Biol Chem 289:jbc.M114.563924–29296. doi:  10.1074/jbc.M114.563924
  209. Tanveer A, Virji S, Andreeva L, et al. (1996) Involvement of cyclophilin D in the activation of a mitochondrial pore by Ca2+ and oxidant stress. Eur J Biochem 238:166–172CrossRefGoogle Scholar
  210. Tong H, Imahashi K, Steenbergen C, Murphy E (2002) Phosphorylation of glycogen synthase kinase-3beta during preconditioning through a phosphatidylinositol-3-kinase--dependent pathway is cardioprotective. Circ Res 90:377–379CrossRefGoogle Scholar
  211. Traba J, Del Arco A, Duchen MR, et al. (2012) SCaMC-1 promotes cancer cell survival by desensitizing mitochondrial permeability transition via ATP/ADP-mediated matrix Ca(2+) buffering. Cell Death Differ 19:650–660. doi: 10.1038/cdd.2011.139 CrossRefGoogle Scholar
  212. Trachootham D, Lu W, Ogasawara MA, et al. (2008) Redox regulation of cell survival. Antioxid Redox Signal 10:1343–1374. doi: 10.1089/ars.2007.1957 CrossRefGoogle Scholar
  213. Turrens JF (1997) Superoxide production by the mitochondrial respiratory chain. Biosci Rep 17:3–8CrossRefGoogle Scholar
  214. Turrens JF (2003) Mitochondrial formation of reactive oxygen species. J Physiol 552:335–344. doi: 10.1113/jphysiol.2003.049478 CrossRefGoogle Scholar
  215. Vainio H, Mela L, Chance B (1970) Energy dependent bivalent cation translocation in rat liver mitochondria. Eur J Biochem 12:387–391CrossRefGoogle Scholar
  216. Valko M, Leibfritz D, Moncol J, et al. (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84. doi: 10.1016/j.biocel.2006.07.001 CrossRefGoogle Scholar
  217. Van Walraven HS, Scholts MJC, Zakharov SD, et al. (2002) pH-dependent Ca2+ binding to the F0 c-subunit affects proton translocation of the ATP synthase from Synechocystis 6803. J Bioenerg Biomembr 34:455–464CrossRefGoogle Scholar
  218. Varanyuwatana P, Halestrap AP (2012) The roles of phosphate and the phosphate carrier in the mitochondrial permeability transition pore. MITOCH 12:120–125. doi: 10.1016/j.mito.2011.04.006 CrossRefGoogle Scholar
  219. Vaseva AV, Marchenko ND, Ji K, et al. (2012) p53 opens the mitochondrial permeability transition pore to trigger necrosis. Cell 149:1536–1548. doi: 10.1016/j.cell.2012.05.014 CrossRefGoogle Scholar
  220. Vega-Naredo I, Loureiro R, Mesquita KA, et al. (2014) Mitochondrial metabolism directs stemness and differentiation in P19 embryonal carcinoma stem cells. Cell Death Differ 21:1560–1574. doi: 10.1038/cdd.2014.66 CrossRefGoogle Scholar
  221. Verma M, Shulga N, Pastorino JG (2013) Sirtuin-3 modulates Bak- and Bax-dependent apoptosis. J Cell Sci 126:274–288. doi: 10.1242/jcs.115188 CrossRefGoogle Scholar
  222. Wang W, Fang H, Groom L, et al. (2008) Superoxide flashes in single mitochondria. Cell 134:279–290. doi: 10.1016/j.cell.2008.06.017 CrossRefGoogle Scholar
  223. Wei A-C, Liu T, Winslow RL, O'Rourke B (2012) Dynamics of matrix-free Ca2+ in cardiac mitochondria: two components of Ca2+ uptake and role of phosphate buffering. The Journal of General Physiology 139:465–478. doi: 10.1085/jgp.201210784 CrossRefGoogle Scholar
  224. Whelan RS, Konstantinidis K, Wei A-C, et al. (2012) Bax regulates primary necrosis through mitochondrial dynamics. Proc Natl Acad Sci 109:6566–6571. doi: 10.1073/pnas.1201608109 CrossRefGoogle Scholar
  225. Xi J, Wang H, Mueller RA, et al. (2009) Mechanism for resveratrol-induced cardioprotection against reperfusion injury involves glycogen synthase kinase 3beta and mitochondrial permeability transition pore. Eur J Pharmacol 604:111–116. doi: 10.1016/j.ejphar.2008.12.024 CrossRefGoogle Scholar
  226. Xie GC, Wilson JE (1988) Rat brain hexokinase: the hydrophobic N-terminus of the mitochondrially bound enzyme is inserted in the lipid bilayer. Arch Biochem Biophys 267:803–810CrossRefGoogle Scholar
  227. Yellon DM, Hausenloy DJ (2007) Myocardial reperfusion injury. N Engl J Med 357:1121–1135. doi: 10.1056/NEJMra071667 CrossRefGoogle Scholar
  228. Yu T, Sheu S-S, Robotham JL, Yoon Y (2008) Mitochondrial fission mediates high glucose-induced cell death through elevated production of reactive oxygen species. Cardiovasc Res 79:341–351. doi: 10.1093/cvr/cvn104 CrossRefGoogle Scholar
  229. Zamzami N, Kroemer G (2001) The mitochondrion in apoptosis: how Pandora's box opens. Nat Rev Mol Cell Biol 2:67–71. doi: 10.1038/35048073 CrossRefGoogle Scholar
  230. Zaobornyj T, Ghafourifar P (2012) Strategic localization of heart mitochondrial NOS: a review of the evidence. AJP: Heart and Circulatory Physiology 303:H1283–H1293. doi: 10.1152/ajpheart.00674.2011 Google Scholar
  231. Zhai P, Sciarretta S, Galeotti J, et al. (2011) Differential roles of GSK-3 during myocardial ischemia and ischemia/reperfusion. Circ Res 109:502–511. doi: 10.1161/CIRCRESAHA.111.249532 CrossRefGoogle Scholar
  232. Zhao L-P, Ji C, Lu P-H, et al. (2013) Oxygen glucose deprivation (OGD)/re-oxygenation-induced in vitro neuronal cell death involves mitochondrial cyclophilin-D/P53 signaling axis. Neurochem Res 38:705–713. doi: 10.1007/s11064-013-0968-5 CrossRefGoogle Scholar
  233. Zhen Y-F, Wang G-D, Zhu L-Q, et al. (2014) P53 dependent mitochondrial permeability transition pore opening is required for dexamethasone-induced death of osteoblasts. J Cell Physiol 229:1475–1483. doi: 10.1002/jcp.24589 CrossRefGoogle Scholar
  234. Zorov DB, Kinnally KW, Perini S, Tedeschi H (1992) Multiple conductance levels in rat heart inner mitochondrial membranes studied by patch clamping. Biochim Biophys Acta 1105:263–270CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Center for Translational Medicine, Department of Medicine, Sidney Kimmel Medical CollegeThomas Jefferson UniversityPhiladelphiaUSA
  2. 2.Mitocare Center for Mitochondria Research, Department of Pathology Anatomy and Cell BiologyThomas Jefferson UniversityPhiladelphiaUSA

Personalised recommendations