Journal of Bioenergetics and Biomembranes

, Volume 48, Issue 3, pp 197–210 | Cite as

Characterization of mitochondrial function in cells with impaired cystic fibrosis transmembrane conductance regulator (CFTR) function

  • Anna Atlante
  • Maria Favia
  • Antonella Bobba
  • Lorenzo Guerra
  • Valeria Casavola
  • Stephan Joel Reshkin


Evidence supporting the occurrence of oxidative stress in Cystic Fibrosis (CF) is well established and the literature suggests that oxidative stress is inseparably linked to mitochondrial dysfunction. Here, we have characterized mitochondrial function, in particular as it regards the steps of oxidative phosphorylation and ROS production, in airway cells either homozygous for the F508del-CFTR allele or stably expressing wt-CFTR. We find that oxygen consumption, ΔΨ generation, adenine nucleotide translocator-dependent ADP/ATP exchange and both mitochondrial Complex I and IV activities are impaired in CF cells, while both mitochondrial ROS production and membrane lipid peroxidation increase. Importantly, treatment of CF cells with the small molecules VX-809 and 4,6,4′-trimethylangelicin, which act as “correctors” for F508del CFTR by rescuing the F508del CFTR-dependent chloride secretion, while having no effect per sè on mitochondrial function in wt-CFTR cells, significantly improved all the above mitochondrial parameters towards values found in the airway cells expressing wt-CFTR. This novel study on mitochondrial bioenergetics provides a springboard for future research to further understand the molecular mechanisms responsible for the involvement of mitochondria in CF and identify the proteins primarily responsible for the F508del-CFTR-dependent mitochondrial impairment and thus reveal potential novel targets for CF therapy.


Cystic fibrosis CFTR Correctors Mitochondria Oxidative phosphorylation ROS 



Antimycin A


Adenylate kinase


Adenine nucleotide translocator








ATP detecting system




Cystic fibrosis


Airway cells homozygous for the F508del-CFTR allele


Cystic fibrosis transmembrane conductance regulator


Cytochrome oxidase


Mitochondrial membrane potential


Electron transport chain


Dimethyl sulfoxide




Airway cells stably expressing wt-CFTR




Potassium cyanide




Mitochondrial respiratory chain


Superoxide anion radical




Oxidative phosphorylation


Phosphate-buffered saline




Cis-parinaric acid




Reactive oxygen species




Superoxide dismutase


Standard deviation






Tetramethyl p-phenylenediamine


Xanthine oxidase





This research was supported by Italian Cystic Fibrosis Research Foundation FFC#1/2015 Project: “Relationship between mitochondria and F508del-CFTR in Cystic Fibrosis” to A.A.

Supplementary material

10863_2016_9663_Fig6_ESM.gif (56 kb)
Supplemental Figure 1

VX-809 and TMA correct F508del CFTR-dependent chloride transport in intact CFBE41o-cells. (A-D) Typical recordings showing changes in intracellular Cl--dependent N-(ethoxy-carbonylmethyl)-6-methoxyquinolinium bromide (MQAE) fluorescence (expressed as the F/F0 ratio where F0 is maximal intensity of fluorescence) in cell monolayers of 16HBE14o- (A) and CFBE41o-preincubated either with the vehicle (B) or with 100 nM TMA (C) or with 5 μM VX-809 (D). The monolayer was stimulated for 3 min with 10 μM Forskolin (FSK) plus 100 μM 3-isobutyl-1-methylxanthine (IBMX) before replacement of apical chloride by nitrate in the absence or presence of the specific CFTR inhibitor CFTRInh-172 (5 μM), added apically (ap) 5 min before nitrate replacement and remained for the entire chloride efflux. (E) Summary of the data collected from different measurements of CFTR-dependent chloride transport in 16HBE14o- and CFBE41o- cell monolayers untreated or treated for 24 hrs with either 100 nM TMA or 5 μM VX-809 or the vehicle alone in which the F508del CFTR-dependent chloride efflux rates [∆(F/F 0)/min] across the apical membrane were calculated as the difference in the F/F 0 ratio per minute [(F/F 0)/min] obtained in the absence and presence of CFTR Inh-172. Statistical comparisons were made using unpaired Student’s t test with respect to the values obtained in monolayers incubated for 24 hrs with the vehicle. Each bar represents the mean ± standard error (s.e.). **p<0.01; ***p<0.001. (GIF 55 kb)

10863_2016_9663_MOESM1_ESM.tif (306 kb)
High resolution image (TIF 305 kb)
10863_2016_9663_MOESM2_ESM.docx (14 kb)
ESM 2 (DOCX 14 kb)


  1. Adam-Vizi V (2005) Production of reactive oxygen species in brain mitochondria: contribution by electron transport chain and non-electron transport chain sources. Antioxid Redox Signal 7:1140–1149CrossRefGoogle Scholar
  2. Atlante A, Bobba A, de Bari L, Fontana F, Calissano P, Marra E, Passarella S (2006) Caspase-dependent alteration of the ADP/ATP translocator triggers the mitochondrial permeability transition which is not required for the low-potassium-dependent apoptosis of cerebellar granule cells. J Neurochem 97:1166–1181CrossRefGoogle Scholar
  3. Battino M, Rugolo M, Romeo G, Lenaz G (1986) Kinetic alterations of cytochrome-c oxidase in cystic fibrosis. FEBS Lett 199:155–158CrossRefGoogle Scholar
  4. Bénit P, Goncalves S, Philippe Dassa E, Brière JJ, Martin G, Rustin P (2006) Three spectrophotometric assays for the measurement of the five respiratory chain complexes in minuscule biological samples. Clin Chim Acta 374:81–86CrossRefGoogle Scholar
  5. Bobba A, Amadoro G, Petragallo VA, Calissano P, Atlante A (2013a) Dissecting the molecular mechanism by which NH2htau and Aβ1-42 peptides impair mitochondrial ANT-1 in Alzheimer disease. Biochim Biophys Acta 1827:848–860CrossRefGoogle Scholar
  6. Bobba A, Amadoro G, Valenti D, Corsetti V, Lassandro R, Atlante A (2013b) Mitochondrial respiratory chain complexes I and IV are impaired by β-amyloid via direct interaction and through complex I-dependent ROS production, respectively. Mitochondrion 13:298–311CrossRefGoogle Scholar
  7. Bobba A, Amadoro G, La Piana G, Calissano P, Atlante A (2015) Glycolytic enzyme upregulation and numbness of mitochondrial activity characterize the early phase of apoptosis in cerebellar granule cells. Apoptosis 20:10–28CrossRefGoogle Scholar
  8. Brodlie M, Haq IJ, Roberts K, Elborn JS (2015) Targeted therapies to improve CFTR function in cystic fibrosis. Genome Med 7:101CrossRefGoogle Scholar
  9. Brown GC, Borutaite V (2012) There is no evidence that mitochondria are the main source of reactive oxygen species in mammalian cells. Mitochondrion 12:1–4CrossRefGoogle Scholar
  10. Clauzure M, Valdivieso AG, Massip Copiz MM, Schulman G, Teiber ML, Santa-Coloma TA (2014) Disruption of interleukin-1β autocrine signaling rescues complex I activity and improves ROS levels in immortalized epithelial cells with impaired cystic fibrosis transmembrane conductance regulator (CFTR) function. PLoS One 9:e99257. doi: 10.1371/journal.pone.0099257 CrossRefGoogle Scholar
  11. Distelmaier F, Koopman WJ, van den Heuvel LP, Rodenburg RJ, Mayatepek E, Willems PH, Smeitink JA (2009) Mitochondrial complex I deficiency: from organelle dysfunction to clinical disease. Brain 132:833–842, ReviewCrossRefGoogle Scholar
  12. Favia M, Mancini MT, Bezzerri V, Guerra L, Laselva O, Abbattiscianni AC, Debellis L, Reshkin SJ, Gambari R, Cabrini G, Casavola V (2014) Trimethylangelicin promotes the functional rescue of mutant F508del CFTR protein in cystic fibrosis airway cells. Am J Physiol Lung Cell Mol Physiol 307:L48–L61CrossRefGoogle Scholar
  13. Fernandez-Checa JC, Garcia-Ruiz C, Ookhtens M, Kaplowitz N (1991) Impaired uptake of glutathione by hepatic mitochondria from chronic ethanol-fed rats. Tracer kinetic studies in vitro and in vivo and susceptibility to oxidant stress. J Clin Invest 87:397–405CrossRefGoogle Scholar
  14. Guerra L, Fanelli T, Favia M, Riccardi SM, Busco G, Cardone RA, Carrabino S, Weinman EJ, Reshkin SJ, Conese M, Casavola V (2005) Na+/H+ exchanger regulatory factor isoform 1 overexpression modulates cystic fibrosis transmembrane conductance regulator (CFTR) expression and activity in human airway 16HBE14o- cells and rescues DeltaF508 CFTR functional expression in cystic fibrosis cells. J Biol Chem 280:40925–40933CrossRefGoogle Scholar
  15. Haq IJ, Gray MA, Garnett JP, Ward C, Brodlie M (2016) Airway surface liquid homeostasis in cystic fibrosis: pathophysiology and therapeutic targets. Thorax 71:284–287CrossRefGoogle Scholar
  16. Hernandez-Zimbron LF, Luna-Munoz J, Mena R, Vazquez-Ramirez R, Kubli-Garfias C, Cribbs DH, Manoutcharian K, Gevorkian G (2012) Amyloid-b peptide binds to cytochrome c oxidase subunit 1. PLoS One 7:e42344. doi: 10.1371/journal.pone.0042344 CrossRefGoogle Scholar
  17. Hockenbery DM, Oltvai ZN, Yin X-M, Millman CL, Korsmeyer SJ (1993) Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell 75:241–251CrossRefGoogle Scholar
  18. Hwang TC, Kirk KL (2013) The CFTR ion channel: gating, regulation and anion permeation. Cold Spring Harb Perspect Med 3:a009498CrossRefGoogle Scholar
  19. Ikuma M, Welsh MJ (2000) Regulation of CFTR Cl- channel gating by ATP binding and hydrolysis. Proc Natl Acad Sci U S A 97:8675–8680CrossRefGoogle Scholar
  20. Kelly-Aubert M, Trudel S, Fritsch J, Nguyen-Khoa T, Baudouin-Legros M, Moriceau S, Jeanson L, Djouadi F, Matar C, Conti M, Ollero M, Brouillard F, Edelman A (2011) GSH monoethyl ester rescues mitochondrial defects in cystic fibrosis models. Hum Mol Genet 20:2745–2759CrossRefGoogle Scholar
  21. Kirkinezos IG, Moraes CT (2001) Reactive oxygen species and mitochondrial diseases. Semin Cell Dev Biol 12:449–457, ReviewCrossRefGoogle Scholar
  22. Korshunov SS, Skulachev VP, Starkov AA (1997) High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Lett 416:15–18CrossRefGoogle Scholar
  23. Livraghi A, Randell SH (2007) Cystic fibrosis and other respiratory diseases of impaired mucus clearance. Toxicol Pathol 35:116–129, ReviewCrossRefGoogle Scholar
  24. Mailloux RJ, Jin X, Willmore WG (2013) Redox regulation of mitochondrial function with emphasis on cysteine oxidation reactions. Redox Biol 2:123–139CrossRefGoogle Scholar
  25. Marchi S, Giorgi C, Suski JM, Agnoletto C, Bononi A, Bonora M, De Marchi E, Missiroli S, Patergnani S, Poletti F, Rimessi A, Duszynski J, Wieckowski MR, Pinton P (2012) Mitochondria-ros crosstalk in the control of cell death and aging. J Signal Transduct. doi: 10.1155/2012/329635 Google Scholar
  26. Martensson J, Meister A (1989) Mitochondrial damage in muscle occurs after marked depletion of glutathione and is prevented by giving glutathione monoester. Proc Natl Acad Sci U S A 86:471–475CrossRefGoogle Scholar
  27. Martensson J, Jain A, Frayer W, Meister A (1989) Glutathione metabolism in the lung: inhibition of its synthesis leads to lamellar body and mitochondrial defects. Proc Natl Acad Sci U S A 86:5296–5300CrossRefGoogle Scholar
  28. Mirò O, Alonso JR, Jarreta D, Casademont J, Urbano-Màrquez A, Cardellach F (1999) Smoking disturbs mitochondrial respiratory function and enhances lipid peroxidation on human circulating lymphocytes. Carcinogenesis 20:1331–1336CrossRefGoogle Scholar
  29. Paradies G, Petrosillo G, Pistolese M, Ruggiero FM (2002) Reactive oxygen species affect mitochondrial electron transport complex I activity through oxidative cardiolipin damage. Gene 286:135–141CrossRefGoogle Scholar
  30. Pouvreau S (2010) Superoxide flashes in mouse skeletal muscle are produced by discrete arrays of active mitochondria operating coherently. PLoS One 5:e13035CrossRefGoogle Scholar
  31. Orth M, Schapira AH (2001) Mitochondria and degenerative disorders. Am J Med Genet 106:27–36CrossRefGoogle Scholar
  32. Ren HY, Grove DE, De La Rosa O, Houck SA, Sopha P, Van Goor F, Hoffman BJ, Cyr DM (2013) VX-809 corrects folding defects in cystic fibrosis transmembrane conductance regulator protein through action on membrane-spanning domain 1. Mol Biol Cell 24:3016–3024CrossRefGoogle Scholar
  33. Robinson KM, Janes MS, Pehar M, Monette JS, Ross MF, Hagen TM, Murphy MP, Beckman JS (2006) Selective fluorescent imaging of superoxide in vivo using ethidium-based probes. Proc Natl Acad Sci U S A 103:15038–15043CrossRefGoogle Scholar
  34. Rossignol R, Letellier T, Malgat M, Rocher C, Mazat JP (2000) Tissue variation in the control of oxidative phosphorylation: implication for mitochondrial diseases. Biochem J 347:45–53CrossRefGoogle Scholar
  35. Rowe SM, Miller S, Sorscher EJ (2005) Cystic fibrosis. N Engl J Med 352:1992–2001CrossRefGoogle Scholar
  36. Schapira AH (1998) Mitochondrial dysfunction in neurodegenerative disorders. Biochim Biophys Acta 1366:225–233CrossRefGoogle Scholar
  37. Shapiro BL, Feigal RJ, Lam LF (1979) Mitochondrial NADH dehydrogenase in cystic fibrosis. Proc Natl Acad Sci U S A 76:2979–2983CrossRefGoogle Scholar
  38. Shapiro BL, Lam LF, Feigal RJ (1982) Mitochondrial NADH dehydrogenase in cystic fibrosis: enzyme kinetics in cultured fibroblasts. Am J Hum Genet 34:846–852Google Scholar
  39. Sharpe MA, Cooper CE (1998) Interaction of peroxynitrite with mitochondrial cytochrome oxidase. Catalytic production of nitric oxide and irreversible inhibition of enzyme activity. J Biol Chem 273:30961–30972CrossRefGoogle Scholar
  40. Sureshbabu A, Bhandari V (2013) Targeting mitochondrial dysfunction in lung diseases: emphasis on mitophagy. Front Physiol 4:384, ReviewCrossRefGoogle Scholar
  41. Vais H, Zhang R, Reenstra WW (2004) Dibasic phosphorylation sites in the R domain of CFTR have stimulatory and inhibitory effects on channel activation. Am J Physiol Cell Physiol 287:C737–C745CrossRefGoogle Scholar
  42. Valdivieso AG, Marcucci F, Taminelli GL, Gonzàlez-Guerrico AM, Alvarez S, Teiber ML, Dankert MA, Santa-Coloma TA (2007) The expression of the mitochondrial gene MT-ND4 is downregulated in cystic fibrosis. Biochem Biophys Res Commun 356:805–809CrossRefGoogle Scholar
  43. Valdivieso AG, Santa-Coloma TA (2013) CFTR activity and mitochondrial function. Redox Biol 1:190–202, ReviewCrossRefGoogle Scholar
  44. Van Goor F, Hadida S, Grootenhuis PD, Burton B, Stack JH, Straley KS, Decker CJ, Miller M, McCartney J, Olson ER, Wine JJ, Frizzell RA, Ashlock M, Negulescu PA (2011) Correction of the F508del-CFTR protein processing defect in vitro by the investigational drug VX-809. Proc Natl Acad Sci U S A 108:18843–18848CrossRefGoogle Scholar
  45. von Ruecker AA, Bertele R, Harms HK (1984) Calcium metabolism and cystic fibrosis: mitochondrial abnormalities suggest a modification of the mitochondrial membrane. Pediatr Res 18:594–599CrossRefGoogle Scholar
  46. Waddell WJ, Hill C (1956) A simple ultraviolet spectrophotometric method for the determination of protein. J Lab Clin Med 48:311–314Google Scholar
  47. Young TA, Cunningham CC, Bailey SM (2002) Reactive oxygen species production by the mitochondrial respiratory chain in isolated rat hepatocytes and liver mitochondria: studies using myxothiazol. Arch Biochem Biophys 405:65–72CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Anna Atlante
    • 1
  • Maria Favia
    • 2
  • Antonella Bobba
    • 1
  • Lorenzo Guerra
    • 2
  • Valeria Casavola
    • 2
  • Stephan Joel Reshkin
    • 2
  1. 1.Institute of Biomembrane and Bioenergetics – CNRBariItaly
  2. 2.Department of Biosciences, Biotechnology and BiopharmaceuticsUniversity of BariBariItaly

Personalised recommendations