Skip to main content
Log in

Characterization of mitochondrial function in cells with impaired cystic fibrosis transmembrane conductance regulator (CFTR) function

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Evidence supporting the occurrence of oxidative stress in Cystic Fibrosis (CF) is well established and the literature suggests that oxidative stress is inseparably linked to mitochondrial dysfunction. Here, we have characterized mitochondrial function, in particular as it regards the steps of oxidative phosphorylation and ROS production, in airway cells either homozygous for the F508del-CFTR allele or stably expressing wt-CFTR. We find that oxygen consumption, ΔΨ generation, adenine nucleotide translocator-dependent ADP/ATP exchange and both mitochondrial Complex I and IV activities are impaired in CF cells, while both mitochondrial ROS production and membrane lipid peroxidation increase. Importantly, treatment of CF cells with the small molecules VX-809 and 4,6,4′-trimethylangelicin, which act as “correctors” for F508del CFTR by rescuing the F508del CFTR-dependent chloride secretion, while having no effect per sè on mitochondrial function in wt-CFTR cells, significantly improved all the above mitochondrial parameters towards values found in the airway cells expressing wt-CFTR. This novel study on mitochondrial bioenergetics provides a springboard for future research to further understand the molecular mechanisms responsible for the involvement of mitochondria in CF and identify the proteins primarily responsible for the F508del-CFTR-dependent mitochondrial impairment and thus reveal potential novel targets for CF therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AA:

Antimycin A

ADK:

Adenylate kinase

ANT:

Adenine nucleotide translocator

AP5A:

P1,P5-di(adenosine-5′)penta-phosphate

ASC:

Ascorbate

ATR:

Atractyloside

ATP D.S.:

ATP detecting system

BP:

3-bromopyruvate

CF:

Cystic fibrosis

CFBE41o-cells:

Airway cells homozygous for the F508del-CFTR allele

CFTR:

Cystic fibrosis transmembrane conductance regulator

COX:

Cytochrome oxidase

Δψ:

Mitochondrial membrane potential

ETC:

Electron transport chain

DMSO:

Dimethyl sulfoxide

GLU:

Glucose

16HBE14o-cells:

Airway cells stably expressing wt-CFTR

hrs:

Hours

KCN:

Potassium cyanide

MAL:

Malate

mRC:

Mitochondrial respiratory chain

O2 −• :

Superoxide anion radical

OUA:

Ouabain

OXPHOS:

Oxidative phosphorylation

PBS:

Phosphate-buffered saline

PHLO:

Phloretin

PnAc:

Cis-parinaric acid

PYR:

Pyruvate

ROS:

Reactive oxygen species

ROT:

Rotenone

SOD:

Superoxide dismutase

S.D.:

Standard deviation

SUCC:

Succinate

TMA:

4,6,4′-trimethylangelicin

TMPD:

Tetramethyl p-phenylenediamine

XOD:

Xanthine oxidase

XX:

Xanthine

References

  • Adam-Vizi V (2005) Production of reactive oxygen species in brain mitochondria: contribution by electron transport chain and non-electron transport chain sources. Antioxid Redox Signal 7:1140–1149

    Article  CAS  Google Scholar 

  • Atlante A, Bobba A, de Bari L, Fontana F, Calissano P, Marra E, Passarella S (2006) Caspase-dependent alteration of the ADP/ATP translocator triggers the mitochondrial permeability transition which is not required for the low-potassium-dependent apoptosis of cerebellar granule cells. J Neurochem 97:1166–1181

    Article  CAS  Google Scholar 

  • Battino M, Rugolo M, Romeo G, Lenaz G (1986) Kinetic alterations of cytochrome-c oxidase in cystic fibrosis. FEBS Lett 199:155–158

    Article  CAS  Google Scholar 

  • Bénit P, Goncalves S, Philippe Dassa E, Brière JJ, Martin G, Rustin P (2006) Three spectrophotometric assays for the measurement of the five respiratory chain complexes in minuscule biological samples. Clin Chim Acta 374:81–86

    Article  Google Scholar 

  • Bobba A, Amadoro G, Petragallo VA, Calissano P, Atlante A (2013a) Dissecting the molecular mechanism by which NH2htau and Aβ1-42 peptides impair mitochondrial ANT-1 in Alzheimer disease. Biochim Biophys Acta 1827:848–860

    Article  CAS  Google Scholar 

  • Bobba A, Amadoro G, Valenti D, Corsetti V, Lassandro R, Atlante A (2013b) Mitochondrial respiratory chain complexes I and IV are impaired by β-amyloid via direct interaction and through complex I-dependent ROS production, respectively. Mitochondrion 13:298–311

    Article  CAS  Google Scholar 

  • Bobba A, Amadoro G, La Piana G, Calissano P, Atlante A (2015) Glycolytic enzyme upregulation and numbness of mitochondrial activity characterize the early phase of apoptosis in cerebellar granule cells. Apoptosis 20:10–28

    Article  CAS  Google Scholar 

  • Brodlie M, Haq IJ, Roberts K, Elborn JS (2015) Targeted therapies to improve CFTR function in cystic fibrosis. Genome Med 7:101

    Article  Google Scholar 

  • Brown GC, Borutaite V (2012) There is no evidence that mitochondria are the main source of reactive oxygen species in mammalian cells. Mitochondrion 12:1–4

    Article  CAS  Google Scholar 

  • Clauzure M, Valdivieso AG, Massip Copiz MM, Schulman G, Teiber ML, Santa-Coloma TA (2014) Disruption of interleukin-1β autocrine signaling rescues complex I activity and improves ROS levels in immortalized epithelial cells with impaired cystic fibrosis transmembrane conductance regulator (CFTR) function. PLoS One 9:e99257. doi:10.1371/journal.pone.0099257

    Article  Google Scholar 

  • Distelmaier F, Koopman WJ, van den Heuvel LP, Rodenburg RJ, Mayatepek E, Willems PH, Smeitink JA (2009) Mitochondrial complex I deficiency: from organelle dysfunction to clinical disease. Brain 132:833–842, Review

    Article  Google Scholar 

  • Favia M, Mancini MT, Bezzerri V, Guerra L, Laselva O, Abbattiscianni AC, Debellis L, Reshkin SJ, Gambari R, Cabrini G, Casavola V (2014) Trimethylangelicin promotes the functional rescue of mutant F508del CFTR protein in cystic fibrosis airway cells. Am J Physiol Lung Cell Mol Physiol 307:L48–L61

    Article  CAS  Google Scholar 

  • Fernandez-Checa JC, Garcia-Ruiz C, Ookhtens M, Kaplowitz N (1991) Impaired uptake of glutathione by hepatic mitochondria from chronic ethanol-fed rats. Tracer kinetic studies in vitro and in vivo and susceptibility to oxidant stress. J Clin Invest 87:397–405

    Article  CAS  Google Scholar 

  • Guerra L, Fanelli T, Favia M, Riccardi SM, Busco G, Cardone RA, Carrabino S, Weinman EJ, Reshkin SJ, Conese M, Casavola V (2005) Na+/H+ exchanger regulatory factor isoform 1 overexpression modulates cystic fibrosis transmembrane conductance regulator (CFTR) expression and activity in human airway 16HBE14o- cells and rescues DeltaF508 CFTR functional expression in cystic fibrosis cells. J Biol Chem 280:40925–40933

    Article  CAS  Google Scholar 

  • Haq IJ, Gray MA, Garnett JP, Ward C, Brodlie M (2016) Airway surface liquid homeostasis in cystic fibrosis: pathophysiology and therapeutic targets. Thorax 71:284–287

    Article  Google Scholar 

  • Hernandez-Zimbron LF, Luna-Munoz J, Mena R, Vazquez-Ramirez R, Kubli-Garfias C, Cribbs DH, Manoutcharian K, Gevorkian G (2012) Amyloid-b peptide binds to cytochrome c oxidase subunit 1. PLoS One 7:e42344. doi:10.1371/journal.pone.0042344

    Article  CAS  Google Scholar 

  • Hockenbery DM, Oltvai ZN, Yin X-M, Millman CL, Korsmeyer SJ (1993) Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell 75:241–251

    Article  CAS  Google Scholar 

  • Hwang TC, Kirk KL (2013) The CFTR ion channel: gating, regulation and anion permeation. Cold Spring Harb Perspect Med 3:a009498

    Article  Google Scholar 

  • Ikuma M, Welsh MJ (2000) Regulation of CFTR Cl- channel gating by ATP binding and hydrolysis. Proc Natl Acad Sci U S A 97:8675–8680

    Article  CAS  Google Scholar 

  • Kelly-Aubert M, Trudel S, Fritsch J, Nguyen-Khoa T, Baudouin-Legros M, Moriceau S, Jeanson L, Djouadi F, Matar C, Conti M, Ollero M, Brouillard F, Edelman A (2011) GSH monoethyl ester rescues mitochondrial defects in cystic fibrosis models. Hum Mol Genet 20:2745–2759

    Article  CAS  Google Scholar 

  • Kirkinezos IG, Moraes CT (2001) Reactive oxygen species and mitochondrial diseases. Semin Cell Dev Biol 12:449–457, Review

    Article  CAS  Google Scholar 

  • Korshunov SS, Skulachev VP, Starkov AA (1997) High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Lett 416:15–18

    Article  CAS  Google Scholar 

  • Livraghi A, Randell SH (2007) Cystic fibrosis and other respiratory diseases of impaired mucus clearance. Toxicol Pathol 35:116–129, Review

    Article  CAS  Google Scholar 

  • Mailloux RJ, Jin X, Willmore WG (2013) Redox regulation of mitochondrial function with emphasis on cysteine oxidation reactions. Redox Biol 2:123–139

    Article  Google Scholar 

  • Marchi S, Giorgi C, Suski JM, Agnoletto C, Bononi A, Bonora M, De Marchi E, Missiroli S, Patergnani S, Poletti F, Rimessi A, Duszynski J, Wieckowski MR, Pinton P (2012) Mitochondria-ros crosstalk in the control of cell death and aging. J Signal Transduct. doi:10.1155/2012/329635

    Google Scholar 

  • Martensson J, Meister A (1989) Mitochondrial damage in muscle occurs after marked depletion of glutathione and is prevented by giving glutathione monoester. Proc Natl Acad Sci U S A 86:471–475

    Article  CAS  Google Scholar 

  • Martensson J, Jain A, Frayer W, Meister A (1989) Glutathione metabolism in the lung: inhibition of its synthesis leads to lamellar body and mitochondrial defects. Proc Natl Acad Sci U S A 86:5296–5300

    Article  CAS  Google Scholar 

  • Mirò O, Alonso JR, Jarreta D, Casademont J, Urbano-Màrquez A, Cardellach F (1999) Smoking disturbs mitochondrial respiratory function and enhances lipid peroxidation on human circulating lymphocytes. Carcinogenesis 20:1331–1336

    Article  Google Scholar 

  • Paradies G, Petrosillo G, Pistolese M, Ruggiero FM (2002) Reactive oxygen species affect mitochondrial electron transport complex I activity through oxidative cardiolipin damage. Gene 286:135–141

    Article  CAS  Google Scholar 

  • Pouvreau S (2010) Superoxide flashes in mouse skeletal muscle are produced by discrete arrays of active mitochondria operating coherently. PLoS One 5:e13035

    Article  Google Scholar 

  • Orth M, Schapira AH (2001) Mitochondria and degenerative disorders. Am J Med Genet 106:27–36

    Article  CAS  Google Scholar 

  • Ren HY, Grove DE, De La Rosa O, Houck SA, Sopha P, Van Goor F, Hoffman BJ, Cyr DM (2013) VX-809 corrects folding defects in cystic fibrosis transmembrane conductance regulator protein through action on membrane-spanning domain 1. Mol Biol Cell 24:3016–3024

    Article  CAS  Google Scholar 

  • Robinson KM, Janes MS, Pehar M, Monette JS, Ross MF, Hagen TM, Murphy MP, Beckman JS (2006) Selective fluorescent imaging of superoxide in vivo using ethidium-based probes. Proc Natl Acad Sci U S A 103:15038–15043

    Article  CAS  Google Scholar 

  • Rossignol R, Letellier T, Malgat M, Rocher C, Mazat JP (2000) Tissue variation in the control of oxidative phosphorylation: implication for mitochondrial diseases. Biochem J 347:45–53

    Article  CAS  Google Scholar 

  • Rowe SM, Miller S, Sorscher EJ (2005) Cystic fibrosis. N Engl J Med 352:1992–2001

    Article  CAS  Google Scholar 

  • Schapira AH (1998) Mitochondrial dysfunction in neurodegenerative disorders. Biochim Biophys Acta 1366:225–233

    Article  CAS  Google Scholar 

  • Shapiro BL, Feigal RJ, Lam LF (1979) Mitochondrial NADH dehydrogenase in cystic fibrosis. Proc Natl Acad Sci U S A 76:2979–2983

    Article  CAS  Google Scholar 

  • Shapiro BL, Lam LF, Feigal RJ (1982) Mitochondrial NADH dehydrogenase in cystic fibrosis: enzyme kinetics in cultured fibroblasts. Am J Hum Genet 34:846–852

    CAS  Google Scholar 

  • Sharpe MA, Cooper CE (1998) Interaction of peroxynitrite with mitochondrial cytochrome oxidase. Catalytic production of nitric oxide and irreversible inhibition of enzyme activity. J Biol Chem 273:30961–30972

    Article  CAS  Google Scholar 

  • Sureshbabu A, Bhandari V (2013) Targeting mitochondrial dysfunction in lung diseases: emphasis on mitophagy. Front Physiol 4:384, Review

    Article  Google Scholar 

  • Vais H, Zhang R, Reenstra WW (2004) Dibasic phosphorylation sites in the R domain of CFTR have stimulatory and inhibitory effects on channel activation. Am J Physiol Cell Physiol 287:C737–C745

    Article  CAS  Google Scholar 

  • Valdivieso AG, Marcucci F, Taminelli GL, Gonzàlez-Guerrico AM, Alvarez S, Teiber ML, Dankert MA, Santa-Coloma TA (2007) The expression of the mitochondrial gene MT-ND4 is downregulated in cystic fibrosis. Biochem Biophys Res Commun 356:805–809

    Article  CAS  Google Scholar 

  • Valdivieso AG, Santa-Coloma TA (2013) CFTR activity and mitochondrial function. Redox Biol 1:190–202, Review

    Article  CAS  Google Scholar 

  • Van Goor F, Hadida S, Grootenhuis PD, Burton B, Stack JH, Straley KS, Decker CJ, Miller M, McCartney J, Olson ER, Wine JJ, Frizzell RA, Ashlock M, Negulescu PA (2011) Correction of the F508del-CFTR protein processing defect in vitro by the investigational drug VX-809. Proc Natl Acad Sci U S A 108:18843–18848

    Article  Google Scholar 

  • von Ruecker AA, Bertele R, Harms HK (1984) Calcium metabolism and cystic fibrosis: mitochondrial abnormalities suggest a modification of the mitochondrial membrane. Pediatr Res 18:594–599

    Article  Google Scholar 

  • Waddell WJ, Hill C (1956) A simple ultraviolet spectrophotometric method for the determination of protein. J Lab Clin Med 48:311–314

    CAS  Google Scholar 

  • Young TA, Cunningham CC, Bailey SM (2002) Reactive oxygen species production by the mitochondrial respiratory chain in isolated rat hepatocytes and liver mitochondria: studies using myxothiazol. Arch Biochem Biophys 405:65–72

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by Italian Cystic Fibrosis Research Foundation FFC#1/2015 Project: “Relationship between mitochondria and F508del-CFTR in Cystic Fibrosis” to A.A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Atlante.

Additional information

Valeria Casavola and Stephan Joel Reshkin contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Figure 1

VX-809 and TMA correct F508del CFTR-dependent chloride transport in intact CFBE41o-cells. (A-D) Typical recordings showing changes in intracellular Cl--dependent N-(ethoxy-carbonylmethyl)-6-methoxyquinolinium bromide (MQAE) fluorescence (expressed as the F/F0 ratio where F0 is maximal intensity of fluorescence) in cell monolayers of 16HBE14o- (A) and CFBE41o-preincubated either with the vehicle (B) or with 100 nM TMA (C) or with 5 μM VX-809 (D). The monolayer was stimulated for 3 min with 10 μM Forskolin (FSK) plus 100 μM 3-isobutyl-1-methylxanthine (IBMX) before replacement of apical chloride by nitrate in the absence or presence of the specific CFTR inhibitor CFTRInh-172 (5 μM), added apically (ap) 5 min before nitrate replacement and remained for the entire chloride efflux. (E) Summary of the data collected from different measurements of CFTR-dependent chloride transport in 16HBE14o- and CFBE41o- cell monolayers untreated or treated for 24 hrs with either 100 nM TMA or 5 μM VX-809 or the vehicle alone in which the F508del CFTR-dependent chloride efflux rates [∆(F/F 0)/min] across the apical membrane were calculated as the difference in the F/F 0 ratio per minute [(F/F 0)/min] obtained in the absence and presence of CFTR Inh-172. Statistical comparisons were made using unpaired Student’s t test with respect to the values obtained in monolayers incubated for 24 hrs with the vehicle. Each bar represents the mean ± standard error (s.e.). **p<0.01; ***p<0.001. (GIF 55 kb)

High resolution image (TIF 305 kb)

ESM 2

(DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atlante, A., Favia, M., Bobba, A. et al. Characterization of mitochondrial function in cells with impaired cystic fibrosis transmembrane conductance regulator (CFTR) function. J Bioenerg Biomembr 48, 197–210 (2016). https://doi.org/10.1007/s10863-016-9663-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-016-9663-y

Keywords

Navigation