Advertisement

Journal of Bioenergetics and Biomembranes

, Volume 47, Issue 5, pp 431–440 | Cite as

A novel viral thymidylate kinase with dual kinase activity

  • Eduardo Guevara-Hernandez
  • Aldo A. Arvizu-Flores
  • Maria E. Lugo-Sanchez
  • Enrique F. Velazquez-Contreras
  • Francisco J. Castillo-Yañez
  • Luis G. Brieba
  • Rogerio R. Sotelo-Mundo
Article
  • 251 Downloads

Abstract

Nucleotide phosphorylation is a key step in DNA replication and viral infections, since suitable levels of nucleotide triphosphates pool are required for this process. Deoxythymidine monophosphate (dTMP) is produced either by de novo or salvage pathways, which is further phosphorylated to deoxythymidine triphosphate (dTTP). Thymidyne monophosphate kinase (TMK) is the enzyme in the junction of both pathways, which phosphorylates dTMP to yield deoxythymidine diphosphate (dTDP) using adenosine triphosphate (ATP) as a phosphate donor. White spot syndrome virus (WSSV) genome contains an open reading frame (ORF454) that encodes a thymidine kinase and TMK domains in a single polypeptide. We overexpressed the TMK ORF454 domain (TMKwssv) and its specific activity was measured with dTMP and dTDP as phosphate acceptors. We found that TMKwssv can phosphorylate dTMP to yield dTDP and also is able to use dTDP as a substrate to produce dTTP. Kinetic parameters K M and k cat were calculated for dTMP (110 μM, 3.6 s−1), dTDP (251 μM, 0.9 s−1) and ATP (92 μM, 3.2 s−1) substrates, and TMKwssv showed a sequential ordered bi-bi reaction mechanism. The binding constants K d for dTMP (1.9 μM) and dTDP (10 μM) to TMKwssv were determined by Isothermal Titration Calorimetry. The affinity of the nucleotidic analog stavudine monophosphate was in the same order of magnitude (K d 3.6 μM) to the canonical substrate dTMP. These results suggest that nucleotide analogues such as stavudine could be a suitable antiviral strategy for the WSSV-associated disease.

Keywords

Thymidylate kinase Nucleotide phosphorylation Diphosphate kinase Isothermal titration calorimetry White spot syndrome virus 

Notes

Acknowledgments

This work was supported by Mexico’s Consejo Nacional de Ciencia y Tecnología (CONACYT) grants CB-2009-131859 to R. Sotelo-Mundo and INFR-2013-01-205617 to A. Arvizu-Flores for ITC equipment. E. Guevara-Hernandez received a graduate scholarship from CONACYT. We thank the following personnel from CIAD: Mr. Gerardo Reyna for bibliographical support and to Mr. Felipe Isac, Luis Leyva, Adalberto Murrieta, Jose Luis Aguilar and Martin Peralta for computational support.

Supplementary material

10863_2015_9622_Fig11_ESM.gif (7 kb)
ESM 1

(GIF 7 kb)

10863_2015_9622_MOESM1_ESM.tiff (79 kb)
High Resolution Image (TIFF 78 kb)
10863_2015_9622_Fig12_ESM.gif (44 kb)
ESM 2

(GIF 43 kb)

10863_2015_9622_MOESM2_ESM.tif (1015 kb)
High Resolution Image (TIFF 1015 kb)
10863_2015_9622_MOESM3_ESM.pdf (34 kb)
ESM 3 (PDF 33 kb)

References

  1. Arvizu-Flores AA, Aispuro-Hernandez E, Garcia-Orozco KD, Varela-Romero A, Valenzuela-Soto E, Velazquez-Contreras EF, Rojo-Domínguez A, Yepiz-Plascencia G, Maley F, Sotelo-Mundo RR (2009) Comp Biochem Physiol Part C Toxicol Pharmacol 150:406–413CrossRefGoogle Scholar
  2. Blondin C, Serina L, Wiesmuller L, Gilles A-M, Barzu O (1994) Anal Biochem 220:219–221CrossRefGoogle Scholar
  3. Caillat C, Topalis D, Agrofoglio LA, Pochet S, Balzarini J, Deville-Bonne D, Meyer P (2008) Proc Natl Acad Sci U S A 105:16900–16905CrossRefGoogle Scholar
  4. Chen MS, Prusoff WH (1978) J Biol Chem 253:1325–1327Google Scholar
  5. Cheng Y-C, Prusoff WH (1973) Biochemistry 12:2612–2619CrossRefGoogle Scholar
  6. De-La-Re-Vega E, Garcia-Orozco KD, Arvizu-Flores AA, Yepiz-Plascencia G, Muhlia-Almazan A, Hernández J, Brieba LG, Sotelo-Mundo RR (2011) Molecules 16:532–542CrossRefGoogle Scholar
  7. Doharey PK, Suthar MK, Verma A, Kumar V, Yadav S, Balaramnavar VM, Rathaur S, Saxena AK, Siddiqi MI, Saxena JK (2014) Acta Trop 133:83–92CrossRefGoogle Scholar
  8. Ferrelli ML, Salvador R, Biedma ME, Berretta MF, Haase S, Sciocco-Cap A, Ghiringhelli PD, Romanowski V (2012) BMC Genomics 13:548CrossRefGoogle Scholar
  9. Freire E (2008) Drug Discov Today 13:869–874CrossRefGoogle Scholar
  10. Gardberg A, Shuvalova L, Monnerjahn C, Konrad M, Lavie A (2003) Structure 11:1265–1277CrossRefGoogle Scholar
  11. Ghaffari N, Sanchez-Flores A, Doan R, Garcia-Orozco KD, Chen PL, Ochoa-Leyva A, Lopez-Zavala AA, Carrasco JS, Hong C, Brieba LG, Rudino-Pinera E, Blood PD, Sawyer JE, Johnson CD, Dindot SV, Sotelo-Mundo RR, Criscitiello MF (2014) Sci Rep 4:7081CrossRefGoogle Scholar
  12. Guevara-Hernandez E, Garcia-Orozco KD, Sotelo-Mundo R (2012) Protein Pept Lett 19:1220–1224CrossRefGoogle Scholar
  13. Guimarães AP, Ramalho TC, França TCC (2014) J Biomol Struct Dyn 32:1601–1612CrossRefGoogle Scholar
  14. Jakob NJ, Muller K, Bahr U, Darai G (2001) Virology 286:182–196CrossRefGoogle Scholar
  15. Kandeel M, Kitade Y (2010) J Bioenerg Biomembr 42:361–369CrossRefGoogle Scholar
  16. Kandeel M, Kitade Y (2011) Biol Pharm Bull 34:173–176CrossRefGoogle Scholar
  17. Kandeel M, Noguchi Y, Oh-Hashi K, Kim H-S, Kitade Y (2014) J Therm Anal Calorim 115:2089–2097CrossRefGoogle Scholar
  18. Kawasaki Y, Freire E (2011) Drug Discov Today 16:985–990CrossRefGoogle Scholar
  19. Lavie A, Konrad M (2004) Mini Rev Med Chem 4:351–359CrossRefGoogle Scholar
  20. Lavie A, Ostermann N, Brundiers R, Goody RS, Reinstein J, Konrad M, Schlichting I (1998) Proc Natl Acad Sci 95:14045–14050CrossRefGoogle Scholar
  21. Li De La Sierra I, Munier-Lehmann H, Gilles AM, Barzu O, Delarue M (2001) J Mol Biol 311:87–100CrossRefGoogle Scholar
  22. Liu WJ, Chang YS, Wang CH, Kou GH, Lo CF (2005) Virology 334:327–341CrossRefGoogle Scholar
  23. Lopez-Zavala AA, Quintero-Reyes IE, Carrasco-Miranda JS, Stojanoff V, Weichsel A, Rudino-Pinera E, Sotelo-Mundo RR (2014) Acta Crystallogr Sect F Struct Biol Cryst Commun 70:1150–1154CrossRefGoogle Scholar
  24. Marquez-Rios E, Moran-Palacio EF, Lugo-Sanchez ME, Ocano-Higuera VM, Pacheco-Aguilar R (2007) J Food Sci 72:C356–C362CrossRefGoogle Scholar
  25. Motomura K, Hirota R, Okada M, Ikeda T, Ishida T, Kuroda A (2014) Appl Environ Microbiol 80:2602–2608CrossRefGoogle Scholar
  26. Munier‐Lehmann H, Chaffotte A, Pochet S, Labesse G (2001) Protein Sci 10:1195–1205CrossRefGoogle Scholar
  27. Neuhard J, Randerath E, Randerath K (1965) Anal Biochem 13:211–222CrossRefGoogle Scholar
  28. Ostermann N, Schlichting I, Brundiers R, Konrad M, Reinstein J, Veit T, Goody RS, Lavie A (2000) Structure 8:629–642CrossRefGoogle Scholar
  29. Ostermann N, Segura-Peña D, Meier C, Veit T, Monnerjahn C, Konrad M, Lavie A (2003) Biochemistry 42:2568–2577CrossRefGoogle Scholar
  30. Perozzo R, Jelesarov I, Bosshard HR, Folkers G, Scapozza L (2000) J Biol Chem 275:16139CrossRefGoogle Scholar
  31. Petit C, Koretke K (2002) Biochem J 363:825–831CrossRefGoogle Scholar
  32. Quintero-Reyes IE, Garcia-Orozco KD, Sugich-Miranda R, Arvizu-Flores AA, Velazquez-Contreras EF, Castillo-Yanez FJ, Sotelo-Mundo RR (2012) J Bioenerg Biomembr 44:325–331CrossRefGoogle Scholar
  33. Ryder JM (1985) J Agric Food Chem 33:678–680CrossRefGoogle Scholar
  34. Segel IH (1976) Biochemical calculations: how to solve mathematical problems in general biochemistry. Wiley, New YorkGoogle Scholar
  35. Topalis D, Collinet B, Gasse C, Dugué L, Balzarini J, Pochet S, Deville-Bonne D (2005) FEBS J 272:6254CrossRefGoogle Scholar
  36. Tsai ME, Yu HT, Tzeng HF, Jl-Leu CM, Chou CJ, Huang CH, Huang JY, Lin GH (2000) Virology 277:100–110CrossRefGoogle Scholar
  37. Tzeng HF, Chang ZF, Peng SE, Wang CH, Lin JY, Kou GH, Lo CF (2002) Virology 299:248–255CrossRefGoogle Scholar
  38. Van Hulten MCW, Tsai MF, Schipper CA, Lo CF, Kou GH, Vlak JM (2000) J Gen Virol 81:307CrossRefGoogle Scholar
  39. Van Hulten MCW, Witteveldt J, Peters S, Kloosterboer N, Tarchini R, Fiers M, Sandbrink H, Lankhorst RK, Vlak JM (2001) Virology 286:7–22CrossRefGoogle Scholar
  40. Van Rompay AR, Johansson M, Karlsson A (1999) Mol Pharmacol 56:562–569Google Scholar
  41. Whittingham J, Carrero-Lerida J, Brannigan J, Ruiz-Perez L, Silva A, Fogg M, Wilkinson A, Gilbert I, Wilson K, Gonzalez-Pacanowska D (2010) Biochem J 428:499–509CrossRefGoogle Scholar
  42. Yagubi AI, Castle AJ, Kropinski AM, Banks TW, Svircev AM (2014) Genome Announc 22:e00413–14Google Scholar
  43. Yegutkin GG, Henttinen T, Jalkanen S (2001) FASEB J 15:251–260CrossRefGoogle Scholar
  44. Zhang J, Fukui T, Ichikawa A (1995) Biochim Biophys Acta 1248:19–26CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Eduardo Guevara-Hernandez
    • 1
    • 2
  • Aldo A. Arvizu-Flores
    • 3
  • Maria E. Lugo-Sanchez
    • 1
  • Enrique F. Velazquez-Contreras
    • 3
  • Francisco J. Castillo-Yañez
    • 3
  • Luis G. Brieba
    • 4
  • Rogerio R. Sotelo-Mundo
    • 1
  1. 1.Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD)HermosilloMexico
  2. 2.Departamento de Investigación y Posgrado en AlimentosUniversidad de SonoraHermosilloMexico
  3. 3.Departamento de Ciencias Químico BiológicasUniversidad de SonoraHermosilloMexico
  4. 4.Laboratorio Nacional de Genómica para la Biodiversidad (LANGEBIO)Centro de Investigación y Estudios Avanzados-Unidad IrapuatoIrapuatoMexico

Personalised recommendations