Advertisement

Journal of Bioenergetics and Biomembranes

, Volume 46, Issue 5, pp 421–434 | Cite as

The role of tubulin in the mitochondrial metabolism and arrangement in muscle cells

  • Kersti Tepp
  • Kati Mado
  • Minna Varikmaa
  • Aleksandr Klepinin
  • Natalja Timohhina
  • Igor Shevchuk
  • Vladimir Chekulayev
  • Andrey V. Kuznetsov
  • Rita Guzun
  • Tuuli Kaambre
Mini-review

Abstract

Tubulin, a well-known component of the microtubule in the cytoskeleton, has an important role in the transport and positioning of mitochondria in a cell type dependent manner. This review describes different functional interactions of tubulin with cellular protein complexes and its functional interaction with the mitochondrial outer membrane. Tubulin is present in oxidative as well as glycolytic type muscle cells, but the kinetics of the in vivo regulation of mitochondrial respiration in these muscle types is drastically different. The interaction between VDAC and tubulin is probably influenced by such factors as isoformic patterns of VDAC and tubulin, post-translational modifications of tubulin and phosphorylation of VDAC. Important factor of the selective permeability of VDAC is the mitochondrial creatine kinase pathway which is present in oxidative cells, but is inactive or missing in glycolytic muscle and cancer cells. As the tubulin-VDAC interaction reduces the permeability of the channel by adenine nucleotides, energy transfer can then take place effectively only through the mitochondrial creatine kinase/phosphocreatine pathway. Therefore, closure of VDAC by tubulin may be one of the reasons of apoptosis in cells without the creatine kinase pathway. An important question in tubulin regulated interactions is whether other proteins are interacting with tubulin. The functional interaction may be direct, through other proteins like plectins, or influenced by simultaneous interaction of other complexes with VDAC.

Keywords

Tubulin Muscle cell Intracellular energetic unit Cytoskeleton Voltage dependent anion channel Mitochondrial outer membrane 

Notes

Acknowledgments

This work was supported by the Estonian Ministry of Education and Research through the institutional research funding IUT (IUT23-1).

References

  1. Anflous K, Blondel O, Bernard A, Khrestchatisky M, Ventura-Clapier R (1998) Characterization of rat porin isoforms: cloning of a cardiac type-3 variant encoding an additional methionine at its putative N-terminal region. Biochim Biophys Acta 1399(1):47–50Google Scholar
  2. Anmann T, Varikmaa M, Timohhina N, Tepp K, Shevchuk I, Chekulayev V et al (2014) Formation of highly organized intracellular structure and energy metabolism in cardiac muscle cells during postnatal development of rat heart. Biochim Biophys Acta. doi: 10.1016/j.bbabio.2014.03.015 Google Scholar
  3. Appaix F, Kuznetsov AV, Usson Y, Kay L, Andrienko T, Olivares J et al (2003) Possible role of cytoskeleton in intracellular arrangement and regulation of mitochondria. Exp Physiol 88(1):175–190Google Scholar
  4. Avasthi P, Marshall WF (2012) Stages of ciliogenesis and regulation of ciliary length. Differentiation 83(2):S30–42. doi: 10.1016/j.diff.2011.11.015 Google Scholar
  5. Baines CP, Song CX, Zheng YT, Wang GW, Zhang J, Wang OL et al (2003) Protein kinase Cepsilon interacts with and inhibits the permeability transition pore in cardiac mitochondria. Circ Res 92(8):873–880. doi: 10.1161/01.RES.0000069215.36389.8D Google Scholar
  6. Banerjee A (2002) Coordination of posttranslational modifications of bovine brain alpha-tubulin. Polyglycylation of delta2 tubulin. J Biol Chem 277(48):46140–46144. doi: 10.1074/jbc.M208065200 Google Scholar
  7. Belmadani S, Pous C, Ventura-Clapier R, Fischmeister R, Mery PF (2002) Post-translational modifications of cardiac tubulin during chronic heart failure in the rat. Mol Cell Biochem 237(1–2):39–46Google Scholar
  8. Belmadani S, Pous C, Fischmeister R, Mery PF (2004) Post-translational modifications of tubulin and microtubule stability in adult rat ventricular myocytes and immortalized HL-1 cardiomyocytes. Mol Cell Biochem 258(1–2):35–48Google Scholar
  9. Bernier-Valentin F, Rousset B (1982) Interaction of tubulin with rat liver mitochondria. J Biol Chem 257(12):7092–7099Google Scholar
  10. Bhogaraju S, Cajanek L, Fort C, Blisnick T, Weber K, Taschner M et al (2013) Molecular basis of tubulin transport within the cilium by IFT74 and IFT81. Science 341(6149):1009–1012. doi: 10.1126/science.1240985 Google Scholar
  11. Capetanaki Y, Bloch RJ, Kouloumenta A, Mavroidis M, Psarras S (2007) Muscle intermediate filaments and their links to membranes and membranous organelles. Exp Cell Res 313(10):2063–2076. doi: 10.1016/j.yexcr.2007.03.033 Google Scholar
  12. Carre M, Andre N, Carles G, Borghi H, Brichese L, Briand C et al (2002) Tubulin is an inherent component of mitochondrial membranes that interacts with the voltage-dependent anion channel. J Biol Chem 277(37):33664–33669. doi: 10.1074/jbc.M203834200 Google Scholar
  13. Cassimeris L, Silva VC, Miller E, Ton Q, Molnar C, Fong J (2012) Fueled by microtubules: does tubulin dimer/polymer partitioning regulate intracellular metabolism? Cytoskeleton (Hoboken) 69(3):133–143. doi: 10.1002/cm.21008 Google Scholar
  14. Clarke SJ, Khaliulin I, Das M, Parker JE, Heesom KJ, Halestrap AP (2008) Inhibition of mitochondrial permeability transition pore opening by ischemic preconditioning is probably mediated by reduction of oxidative stress rather than mitochondrial protein phosphorylation. Circ Res 102(9):1082–1090. doi: 10.1161/CIRCRESAHA.107.167072 Google Scholar
  15. Colombini M (2004) VDAC: the channel at the interface between mitochondria and the cytosol. Mol Cell Biochem 256–257(1–2):107–115Google Scholar
  16. Colombini M, Blachly-Dyson E, Forte M (1996) VDAC, a channel in the outer mitochondrial membrane. Ion Channels 4:169–202Google Scholar
  17. Das S, Wong R, Rajapakse N, Murphy E, Steenbergen C (2008) Glycogen synthase kinase 3 inhibition slows mitochondrial adenine nucleotide transport and regulates voltage-dependent anion channel phosphorylation. Circ Res 103(9):983–991. doi: 10.1161/CIRCRESAHA.108.178970 Google Scholar
  18. Das M, Chiron S, Verde F (2010) Microtubule-dependent spatial organization of mitochondria in fission yeast. Methods Cell Biol 97:203–221. doi: 10.1016/S0091-679X(10)97012-X Google Scholar
  19. Dzeja PP, Terzic A (2003) Phosphotransfer networks and cellular energetics. J Exp Biol 206(Pt 12):2039–2047Google Scholar
  20. Dzeja PP, Zeleznikar RJ, Goldberg ND (1996) Suppression of creatine kinase-catalyzed phosphotransfer results in increased phosphoryl transfer by adenylate kinase in intact skeletal muscle. J Biol Chem 271(22):12847–12851Google Scholar
  21. Dzeja PP, Zeleznikar RJ, Goldberg ND (1998) Adenylate kinase: kinetic behavior in intact cells indicates it is integral to multiple cellular processes. Mol Cell Biochem 184(1–2):169–182Google Scholar
  22. Dzeja PP, Bortolon R, Perez-Terzic C, Holmuhamedov EL, Terzic A (2002) Energetic communication between mitochondria and nucleus directed by catalyzed phosphotransfer. Proc Natl Acad Sci U S A 99(15):10156–10161. doi: 10.1073/pnas.152259999 Google Scholar
  23. Dzeja PP, Terzic A, Wieringa B (2004) Phosphotransfer dynamics in skeletal muscle from creatine kinase gene-deleted mice. Mol Cell Biochem 256–257(1–2):13–27Google Scholar
  24. Dzeja PP, Hoyer K, Tian R, Zhang S, Nemutlu E, Spindler M et al (2011) Rearrangement of energetic and substrate utilization networks compensate for chronic myocardial creatine kinase deficiency. J Physiol. doi: 10.1113/jphysiol.2011.212829 Google Scholar
  25. Friedman JR, Webster BM, Mastronarde DN, Verhey KJ, Voeltz GK (2010) ER sliding dynamics and ER-mitochondrial contacts occur on acetylated microtubules. J Cell Biol 190(3):363–375. doi: 10.1083/jcb.200911024 Google Scholar
  26. Georgatos SD, Maison C (1996) Integration of intermediate filaments into cellular organelles. Int Rev Cytol 164:91–138Google Scholar
  27. Gershon ND, Porter KR, Trus BL (1985) The cytoplasmic matrix: its volume and surface area and the diffusion of molecules through it. Proc Natl Acad Sci U S A 82(15):5030–5034Google Scholar
  28. Guzun R, Timohhina N, Tepp K, Monge C, Kaambre T, Sikk P et al (2009) Regulation of respiration controlled by mitochondrial creatine kinase in permeabilized cardiac cells in situ. Importance of system level properties. Biochim Biophys Acta 1787(9):1089–1105. doi: 10.1016/j.bbabio.2009.03.024 Google Scholar
  29. Guzun R, Karu-Varikmaa M, Gonzalez-Granillo M, Kuznetsov AV, Michel L, Cottet-Rousselle C et al (2011) Mitochondria-cytoskeleton interaction: distribution of beta-tubulins in cardiomyocytes and HL-1 cells. Biochim Biophys Acta 1807(4):458–469. doi: 10.1016/j.bbabio.2011.01.010 Google Scholar
  30. Guzun R, Gonzalez-Granillo M, Karu-Varikmaa M, Grichine A, Usson Y, Kaambre T et al (2012) Regulation of respiration in muscle cells in vivo by VDAC through interaction with the cytoskeleton and MtCK within Mitochondrial Interactosome. Biochim Biophys Acta 1818(6):1545–1554. doi: 10.1016/j.bbamem.2011.12.034 Google Scholar
  31. Guzun R, Kaambre T, Bagur R, Grichine A, Usson Y, Varikmaa M et al (2014) Modular organization of cardiac energy metabolism: energy conversion, transfer and feedback regulation. Acta Physiol (Oxf). doi: 10.1111/apha.12287 Google Scholar
  32. Heggeness MH, Simon M, Singer SJ (1978) Association of mitochondria with microtubules in cultured cells. Proc Natl Acad Sci U S A 75(8):3863–3866Google Scholar
  33. Hein S, Kostin S, Heling A, Maeno Y, Schaper J (2000) The role of the cytoskeleton in heart failure. Cardiovasc Res 45(2):273–278Google Scholar
  34. Helfand BT, Mikami A, Vallee RB, Goldman RD (2002) A requirement for cytoplasmic dynein and dynactin in intermediate filament network assembly and organization. J Cell Biol 157(5):795–806. doi: 10.1083/jcb.200202027 Google Scholar
  35. Inclan YF, Nogales E (2001) Structural models for the self-assembly and microtubule interactions of gamma-, delta- and epsilon-tubulin. J Cell Sci 114(Pt 2):413–422Google Scholar
  36. Jacobus WE, Saks VA (1982) Creatine kinase of heart mitochondria: changes in its kinetic properties induced by coupling to oxidative phosphorylation. Arch Biochem Biophys 219(1):167–178Google Scholar
  37. Janke C, Bulinski JC (2011) Post-translational regulation of the microtubule cytoskeleton: mechanisms and functions. Nat Rev Mol Cell Biol 12(12):773–786. doi: 10.1038/nrm3227 Google Scholar
  38. Javadov S, Rajapurohitam V, Kilic A, Zeidan A, Choi A, Karmazyn M (2009) Anti-hypertrophic effect of NHE-1 inhibition involves GSK-3beta-dependent attenuation of mitochondrial dysfunction. J Mol Cell Cardiol 46(6):998–1007. doi: 10.1016/j.yjmcc.2008.12.023 Google Scholar
  39. Johnson LV, Walsh ML, Chen LB (1980) Localization of mitochondria in living cells with rhodamine 123. Proc Natl Acad Sci U S A 77(2):990–994Google Scholar
  40. Jolly AL, Kim H, Srinivasan D, Lakonishok M, Larson AG, Gelfand VI (2010) Kinesin-1 heavy chain mediates microtubule sliding to drive changes in cell shape. Proc Natl Acad Sci U S A 107(27):12151–12156. doi: 10.1073/pnas.1004736107 Google Scholar
  41. Kaambre T, Chekulayev V, Shevchuk I, Karu-Varikmaa M, Timohhina N, Tepp K et al (2012) Metabolic control analysis of cellular respiration in situ in intraoperational samples of human breast cancer. J Bioenerg Biomembr 44(5):539–558. doi: 10.1007/s10863-012-9457-9 Google Scholar
  42. Kaambre T, Chekulayev V, Shevchuk I, Tepp K, Timohhina N, Varikmaa M et al (2013) Metabolic control analysis of respiration in human cancer tissue. Front Physiol 4:151. doi: 10.3389/fphys.2013.00151 Google Scholar
  43. Kaasik A, Veksler V, Boehm E, Novotova M, Minajeva A, Ventura-Clapier R (2001) Energetic crosstalk between organelles: architectural integration of energy production and utilization. Circ Res 89(2):153–159Google Scholar
  44. Kaasik A, Safiulina D, Zharkovsky A, Veksler V (2007) Regulation of mitochondrial matrix volume. Am J Physiol Cell Physiol 292(1):C157–163. doi: 10.1152/ajpcell.00272.2006 Google Scholar
  45. Karu-Varikmaa M, Saaremäe M, Sikk P, Käämbre T, Metsis M, Saks V (2011) Regulation of mitochondrial respiration by different tubulin isoforms in vivo. Biophys J 100(3, Supplement 1):459a. doi: 10.1016/j.bpj.2010.12.2702 Google Scholar
  46. Kavallaris M (2010) Microtubules and resistance to tubulin-binding agents. Nat Rev Cancer 10(3):194–204. doi: 10.1038/nrc2803 Google Scholar
  47. Kedzior J, Masaoka M, Kurono C, Spodnik JH, Hallmann A, Majczak A et al (2004) Changes in physicochemical properties of microtubules lead to the formation of a single spherical structure of mitochondrial assembly enveloping nuclear chromatins. J Electron Microsc (Tokyo) 53(6):659–670Google Scholar
  48. Konieczny P, Fuchs P, Reipert S, Kunz WS, Zeold A, Fischer I et al (2008) Myofiber integrity depends on desmin network targeting to Z-disks and costameres via distinct plectin isoforms. J Cell Biol 181(4):667–681. doi: 10.1083/jcb.200711058 Google Scholar
  49. Kuznetsov AV, Margreiter R (2009) Heterogeneity of mitochondria and mitochondrial function within cells as another level of mitochondrial complexity. Int J Mol Sci 10(4):1911–1929. doi: 10.3390/ijms10041911 Google Scholar
  50. Kuznetsov AV, Tiivel T, Sikk P, Kaambre T, Kay L, Daneshrad Z et al (1996) Striking differences between the kinetics of regulation of respiration by ADP in slow-twitch and fast-twitch muscles in vivo. Eur J Biochem 241(3):909–915Google Scholar
  51. Kuznetsov AV, Hermann M, Saks V, Hengster P, Margreiter R (2009) The cell-type specificity of mitochondrial dynamics. Int J Biochem Cell Biol 41(10):1928–1939. doi: 10.1016/j.biocel.2009.03.007 Google Scholar
  52. Kuznetsov AV, Javadov S, Guzun R, Grimm M, Saks V (2013) Cytoskeleton and regulation of mitochondrial function: the role of beta-tubulin II. Front Physiol 4:82. doi: 10.3389/fphys.2013.00082 Google Scholar
  53. Leeson CR, Leeson TS (1969) Mitochondrial organization in skeletal muscle of the rat soft palate. J Anat 105(Pt 2):363–370Google Scholar
  54. Lemasters JJ, Holmuhamedov E (2006) Voltage-dependent anion channel (VDAC) as mitochondrial governator–thinking outside the box. Biochim Biophys Acta 1762(2):181–190. doi: 10.1016/j.bbadis.2005.10.006 Google Scholar
  55. Lowe J, Li H, Downing KH, Nogales E (2001) Refined structure of alpha beta-tubulin at 3.5 a resolution. J Mol Biol 313(5):1045–1057. doi: 10.1006/jmbi.2001.5077 Google Scholar
  56. Luduena RF (1993) Are tubulin isotypes functionally significant. Mol Biol Cell 4(5):445–457Google Scholar
  57. Luduena RF (1998) Multiple forms of tubulin: different gene products and covalent modifications. Int Rev Cytol 178:207–275Google Scholar
  58. Maack C, O’Rourke B (2007) Excitation-contraction coupling and mitochondrial energetics. Basic Res Cardiol 102(5):369–392. doi: 10.1007/s00395-007-0666-z Google Scholar
  59. Maldonado EN, Lemasters JJ (2012) Warburg revisited: regulation of mitochondrial metabolism by voltage-dependent anion channels in cancer cells. J Pharmacol Exp Ther 342(3):637–641. doi: 10.1124/jpet.112.192153 Google Scholar
  60. Maldonado EN, Patnaik J, Mullins MR, Lemasters JJ (2010) Free tubulin modulates mitochondrial membrane potential in cancer cells. Cancer Res 70(24):10192–10201. doi: 10.1158/0008-5472.CAN-10-2429 Google Scholar
  61. Maldonado EN, Sheldon KL, DeHart DN, Patnaik J, Manevich Y, Townsend DM et al (2013) Voltage-dependent anion channels modulate mitochondrial metabolism in cancer cells: regulation by free tubulin and erastin. J Biol Chem 288(17):11920–11929. doi: 10.1074/jbc.M112.433847 Google Scholar
  62. Mathupala SP, Ko YH, Pedersen PL (2009) Hexokinase-2 bound to mitochondria: cancer’s stygian link to the “Warburg Effect” and a pivotal target for effective therapy. Semin Cancer Biol 19(1):17–24. doi: 10.1016/j.semcancer.2008.11.006 Google Scholar
  63. Milner DJ, Mavroidis M, Weisleder N, Capetanaki Y (2000) Desmin cytoskeleton linked to muscle mitochondrial distribution and respiratory function. J Cell Biol 150(6):1283–1298Google Scholar
  64. Nicholls D (2007) 1.1 bioenergetics. In: Lajtha A, Gibson GE, Dienel GA (eds) Handbook of neurochemistry and molecular neurobiology brain energetics. Integration of molecular and cellular processes. Springer, New York, pp 3–16Google Scholar
  65. Nogales E, Wang HW (2006) Structural intermediates in microtubule assembly and disassembly: how and why? Curr Opin Cell Biol 18(2):179–184. doi: 10.1016/j.ceb.2006.02.009 Google Scholar
  66. Nogales E, Downing KH, Amos LA, Lowe J (1998) Tubulin and FtsZ form a distinct family of GTPases. Nat Struct Biol 5(6):451–458Google Scholar
  67. Oddoux S, Zaal KJ, Tate V, Kenea A, Nandkeolyar SA, Reid E et al (2013) Microtubules that form the stationary lattice of muscle fibers are dynamic and nucleated at Golgi elements. J Cell Biol 203(2):205–213. doi: 10.1083/jcb.201304063 Google Scholar
  68. Ogata T, Yamasaki Y (1997) Ultra-high-resolution scanning electron microscopy of mitochondria and sarcoplasmic reticulum arrangement in human red, white, and intermediate muscle fibers. Anat Rec 248(2):214–223. doi: 10.1002/(SICI)1097-0185(199706)248:2<214::AID-AR8>3.0.CO;2-S Google Scholar
  69. Palmer JW, Tandler B, Hoppel CL (1977) Biochemical properties of subsarcolemmal and interfibrillar mitochondria isolated from rat cardiac muscle. J Biol Chem 252(23):8731–8739Google Scholar
  70. Peters R (1986) Fluorescence microphotolysis to measure nucleocytoplasmic transport and intracellular mobility. Biochim Biophys Acta 864(3–4):305–359Google Scholar
  71. Piquereau J, Caffin F, Novotova M, Lemaire C, Veksler V, Garnier A et al (2013) Mitochondrial dynamics in the adult cardiomyocytes: which roles for a highly specialized cell? Front Physiol 4:102. doi: 10.3389/fphys.2013.00102 Google Scholar
  72. Prahlad V, Yoon M, Moir RD, Vale RD, Goldman RD (1998) Rapid movements of vimentin on microtubule tracks: kinesin-dependent assembly of intermediate filament networks. J Cell Biol 143(1):159–170Google Scholar
  73. Priel A, Tuszynski JA, Woolf NJ (2005) Transitions in microtubule C-termini conformations as a possible dendritic signaling phenomenon. Eur Biophys J 35(1):40–52. doi: 10.1007/s00249-005-0003-0 Google Scholar
  74. Pucar D, Dzeja PP, Bast P, Gumina RJ, Drahl C, Lim L et al (2004) Mapping hypoxia-induced bioenergetic rearrangements and metabolic signaling by 18O-assisted 31P NMR and 1H NMR spectroscopy. Mol Cell Biochem 256–257(1–2):281–289Google Scholar
  75. Reipert S, Steinbock F, Fischer I, Bittner RE, Zeold A, Wiche G (1999) Association of mitochondria with plectin and desmin intermediate filaments in striated muscle. Exp Cell Res 252(2):479–491. doi: 10.1006/excr.1999.4626 Google Scholar
  76. Robey RB, Hay N (2006) Mitochondrial hexokinases, novel mediators of the antiapoptotic effects of growth factors and Akt. Oncogene 25(34):4683–4696. doi: 10.1038/sj.onc.1209595 Google Scholar
  77. Rodriguez OC, Schaefer AW, Mandato CA, Forscher P, Bement WM, Waterman-Storer CM (2003) Conserved microtubule-actin interactions in cell movement and morphogenesis. Nat Cell Biol 5(7):599–609. doi: 10.1038/ncb0703-599 Google Scholar
  78. Rostovtseva T, Bezrukov S (2008) VDAC regulation: role of cytosolic proteins and mitochondrial lipids. J Bioenerg Biomembr 40(3):163–170. doi: 10.1007/s10863-008-9145-y Google Scholar
  79. Rostovtseva TK, Bezrukov SM (2012) VDAC inhibition by tubulin and its physiological implications. Biochim Biophys Acta 1818(6):1526–1535. doi: 10.1016/j.bbamem.2011.11.004 Google Scholar
  80. Rostovtseva TK, Komarov A, Bezrukov SM, Colombini M (2002) VDAC channels differentiate between natural metabolites and synthetic molecules. J Membr Biol 187(2):147–156. doi: 10.1007/s00232-001-0159-1 Google Scholar
  81. Rostovtseva TK, Sheldon KL, Hassanzadeh E, Monge C, Saks V, Bezrukov SM et al (2008) Tubulin binding blocks mitochondrial voltage-dependent anion channel and regulates respiration. Proc Natl Acad Sci U S A 105(48):18746–18751. doi: 10.1073/pnas.0806303105 Google Scholar
  82. Sackett DL (2010a) Evolution and coevolution of tubulin's carboxy-terminal tails and mitochonsdria. In: Svensson OL (ed) Mitochondria: structure, functions and dysfunctions. Nova Science Publishers, USA, pp 441–470Google Scholar
  83. Sackett DL (2010) Evolution and Coevolution of Tubulin’s Carboxy-Terminal Tails and Mitochondria. Mitochondria: Struct, Funct Dysfunctions, 789–810Google Scholar
  84. Sackett DL, Bhattacharyya B, Wolff J (1985) Tubulin subunit carboxyl termini determine polymerization efficiency. J Biol Chem 260(1):43–45Google Scholar
  85. Saetersdal T, Greve G, Dalen H (1990) Associations between beta-tubulin and mitochondria in adult isolated heart myocytes as shown by immunofluorescence and immunoelectron microscopy. Histochemistry 95(1):1–10Google Scholar
  86. Saks VA (2007) Molecular system bioenergetics: energy for life. Wiley-VCH, WeinheimGoogle Scholar
  87. Saks VA, Kuznetsov AV, Khuchua ZA, Vasilyeva EV, Belikova JO, Kesvatera T et al (1995) Control of cellular respiration in vivo by mitochondrial outer membrane and by creatine kinase. A new speculative hypothesis: possible involvement of mitochondrial-cytoskeleton interactions. J Mol Cell Cardiol 27(1):625–645Google Scholar
  88. Saks VA, Kuznetsov AV, Vendelin M, Guerrero K, Kay L, Seppet EK (2004) Functional coupling as a basic mechanism of feedback regulation of cardiac energy metabolism. Mol Cell Biochem 256–257(1–2):185–199Google Scholar
  89. Saks V, Dzeja PP, Guzun R, Aliev MK, Vendelin M, Terzic A et al (2007a) System analysis of cardiac energetics–excitation–contraction coupling: integration of mitochondrial respiration, phosphotransfer pathways, metabolic pacing, and substrate supply in the heart. In: Saks V (ed) Molecular system bioenergetics: energy for life. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 367–405Google Scholar
  90. Saks V, Kaambre T, Guzun R, Anmann T, Sikk P, Schlattner U et al (2007b) The creatine kinase phosphotransfer network: thermodynamic and kinetic considerations, the impact of the mitochondrial outer membrane and modelling approaches. Subcell Biochem 46:27–65Google Scholar
  91. Saks V, Kuznetsov AV, Gonzalez-Granillo M, Tepp K, Timohhina N, Varikmaa-Karu M, Käämbre T, Dos Santos P, Guzun R (2011) Intracellular energetic units regulate metabolism in the cardiac cells. JMCC. doi: 10.1016/j.yjmcc.2011.07.015 Google Scholar
  92. Saks V, Kuznetsov AV, Gonzalez-Granillo M, Tepp K, Timohhina N, Karu-Varikmaa M et al (2012) Intracellular energetic units regulate metabolism in cardiac cells. J Mol Cell Cardiol 52(2):419–436. doi: 10.1016/j.yjmcc.2011.07.015 Google Scholar
  93. Sato H, Nagai T, Kuppuswamy D, Narishige T, Koide M, Menick DR et al (1997) Microtubule stabilization in pressure overload cardiac hypertrophy. J Cell Biol 139(4):963–973Google Scholar
  94. Schroder R, Kunz WS, Rouan F, Pfendner E, Tolksdorf K, Kappes-Horn K et al (2002) Disorganization of the desmin cytoskeleton and mitochondrial dysfunction in plectin-related epidermolysis bullosa simplex with muscular dystrophy. J Neuropathol Exp Neurol 61(6):520–530Google Scholar
  95. Seppet EK, Kaambre T, Sikk P, Tiivel T, Vija H, Tonkonogi M et al (2001) Functional complexes of mitochondria with Ca,MgATPases of myofibrils and sarcoplasmic reticulum in muscle cells. Biochim Biophys Acta 1504(2–3):379–395Google Scholar
  96. Sheldon KL, Maldonado EN, Lemasters JJ, Rostovtseva TK, Bezrukov SM (2011) Phosphorylation of voltage-dependent anion channel by serine/threonine kinases governs its interaction with tubulin. PLoS One 6(10):e25539. doi: 10.1371/journal.pone.0025539 Google Scholar
  97. Skoufias DA, Wilson L (1998) Assembly and colchicine binding characteristics of tubulin with maximally tyrosinated and detyrosinated alpha-tubulins. Arch Biochem Biophys 351(1):115–122. doi: 10.1006/abbi.1997.0510 Google Scholar
  98. Song J, Midson C, Blachly-Dyson E, Forte M, Colombini M (1998) The sensor regions of VDAC are translocated from within the membrane to the surface during the gating processes. Biophys J 74(6):2926–2944. doi: 10.1016/S0006-3495(98)78000-2 Google Scholar
  99. Starling EH, Visscher MB (1927) The regulation of the energy output of the heart. J Physiol 62(3):243–261Google Scholar
  100. Sun CN, Dhalla NS, Olson RE (1969) Formation of gigantic mitochondria in hypoxic isolated perfused rat hearts. Experientia 25(7):763–764Google Scholar
  101. Svitkina TM, Verkhovsky AB, Borisy GG (1996) Plectin sidearms mediate interaction of intermediate filaments with microtubules and other components of the cytoskeleton. J Cell Biol 135(4):991–1007Google Scholar
  102. Tagawa H, Koide M, Sato H, Zile MR, Carabello BA, Cooper G 4th (1998) Cytoskeletal role in the transition from compensated to decompensated hypertrophy during adult canine left ventricular pressure overloading. Circ Res 82(7):751–761Google Scholar
  103. Takahashi M, Tsutsui H, Tagawa H, Igarashi-Saito K, Imanaka-Yoshida K, Takeshita A (1998) Microtubules are involved in early hypertrophic responses of myocardium during pressure overload. Am J Physiol 275(2 Pt 2):H341–348Google Scholar
  104. Tang HL, Lung HL, Wu KC, Le AH, Tang HM, Fung MC (2008) Vimentin supports mitochondrial morphology and organization. Biochem J 410(1):141–146. doi: 10.1042/BJ20071072 Google Scholar
  105. Tepp K, Timohhina N, Chekulayev V, Shevchuk I, Kaambre T, Saks V (2010) Metabolic control analysis of integrated energy metabolism in permeabilized cardiomyocytes. Biochimica et Biophysica Acta (BBA) - Bioenergetics 1797(Supplement 1):138–139. doi: 10.1016/j.bbabio.2010.04.413 Google Scholar
  106. Timohhina N, Guzun R, Tepp K, Monge C, Varikmaa M, Vija H et al (2009) Direct measurement of energy fluxes from mitochondria into cytoplasm in permeabilized cardiac cells in situ: some evidence for Mitochondrial Interactosome. J Bioenerg Biomembr 41(3):259–275. doi: 10.1007/s10863-009-9224-8 Google Scholar
  107. Tomanek RJ, Asmundson CR, Cooper RR, Barnard RJ (1973) Fine structure of fast-twitch and slow-twitch guinea pig muscle fibers. J Morphol 139(1):47–65. doi: 10.1002/jmor.1051390104 Google Scholar
  108. Tuszynski JA, Carpenter EJ, Huzil JT, Malinski W, Luchko T, Luduena RF (2006) The evolution of the structure of tubulin and its potential consequences for the role and function of microtubules in cells and embryos. Int J Dev Biol 50(2–3):341–358. doi: 10.1387/ijdb.052063jt Google Scholar
  109. Ujwal R, Cascio D, Colletier JP, Faham S, Zhang J, Toro L et al (2008) The crystal structure of mouse VDAC1 at 2.3 A resolution reveals mechanistic insights into metabolite gating. Proc Natl Acad Sci U S A 105(46):17742–17747. doi: 10.1073/pnas.0809634105 Google Scholar
  110. Varikmaa M, Bagur R, Kaambre T, Grichine A, Timohhina N, Tepp K et al (2014) Role of mitochondria-cytoskeleton interactions in respiration regulation and mitochondrial organization in striated muscles. Biochim Biophys Acta 1837(2):232–245. doi: 10.1016/j.bbabio.2013.10.011 Google Scholar
  111. Vendelin M, Birkedal R (2008) Anisotropic diffusion of fluorescently labeled ATP in rat cardiomyocytes determined by raster image correlation spectroscopy. Am J Physiol Cell Physiol 295(5):C1302–1315. doi: 10.1152/ajpcell.00313.2008 Google Scholar
  112. Ventura-Clapier R, Kaasik A, Veksler V (2004) Structural and functional adaptations of striated muscles to CK deficiency. Mol Cell Biochem 256–257(1–2):29–41Google Scholar
  113. Wade RH, Garcia-Saez I, Kozielski F (2009) Structural variations in protein superfamilies: actin and tubulin. Mol Biotechnol 42(1):49–60. doi: 10.1007/s12033-008-9128-6 Google Scholar
  114. Wallimann T, Wyss M, Brdiczka D, Nicolay K, Eppenberger HM (1992) Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the ‘phosphocreatine circuit’ for cellular energy homeostasis. Biochem J 281(Pt 1):21–40Google Scholar
  115. Webster DR (1997) Regulation of post-translationally modified microtubule populations during neonatal cardiac development. J Mol Cell Cardiol 29(6):1747–1761. doi: 10.1006/jmcc.1997.0421 Google Scholar
  116. Wiche G (1998) Role of plectin in cytoskeleton organization and dynamics. J Cell Sci 111(Pt 17):2477–2486Google Scholar
  117. Wilding JR, Joubert F, de Araujo C, Fortin D, Novotova M, Veksler V et al (2006) Altered energy transfer from mitochondria to sarcoplasmic reticulum after cytoarchitectural perturbations in mice hearts. J Physiol 575(Pt 1):191–200. doi: 10.1113/jphysiol.2006.114116 Google Scholar
  118. Williamson JR, Ford C, Illingworth J, Safer B (1976) Coordination of citric acid cycle activity with electron transport flux. Circ Res 38(5 Suppl 1):I39–51Google Scholar
  119. Winter L, Abrahamsberg C, Wiche G (2008) Plectin isoform 1b mediates mitochondrion-intermediate filament network linkage and controls organelle shape. J Cell Biol 181(6):903–911. doi: 10.1083/jcb.200710151 Google Scholar
  120. Yaffe MP, Harata D, Verde F, Eddison M, Toda T, Nurse P (1996) Microtubules mediate mitochondrial distribution in fission yeast. Proc Natl Acad Sci U S A 93(21):11664–11668Google Scholar
  121. Yoon M, Moir RD, Prahlad V, Goldman RD (1998) Motile properties of vimentin intermediate filament networks in living cells. J Cell Biol 143(1):147–157Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Kersti Tepp
    • 1
  • Kati Mado
    • 1
  • Minna Varikmaa
    • 2
  • Aleksandr Klepinin
    • 1
  • Natalja Timohhina
    • 1
  • Igor Shevchuk
    • 1
  • Vladimir Chekulayev
    • 1
  • Andrey V. Kuznetsov
    • 3
  • Rita Guzun
    • 4
    • 5
  • Tuuli Kaambre
    • 1
  1. 1.Laboratory of BioenergeticsNational Institute of Chemical Physics and BiophysicsTallinnEstonia
  2. 2.Faculty of Science, Department of ChemistryTallinn University of TechnologyTallinnEstonia
  3. 3.Cardiac Surgery Research Laboratory, Department of Heart SurgeryInnsbruck Medical UniversityInnsbruckAustria
  4. 4.Laboratory of Fundamental and Applied Bioenergetics, INSERM U1055Joseph Fourier UniversityGrenobleFrance
  5. 5.Department of Rehabilitation and PhysiologyUniversity Hospital GrenobleGrenobleFrance

Personalised recommendations