Journal of Bioenergetics and Biomembranes

, Volume 46, Issue 2, pp 93–98 | Cite as

Linking alpha-synuclein properties with oxidation: a hypothesis on a mechanism underling cellular aggregation

  • Suzanne Scarlata
  • Urszula Golebiewska


α-Synuclein is a small, natively unstructured protein with propensity to aggregate. α-Synuclein fibrils are major components of Lewy bodies that are hallmarks of many neurodegenerative diseases. The solution properties and aggregation behavior of α-synuclein has been well characterized, but despite numerous studies that address the role of α-synuclein in cells, a clear physiological function of this protein remains a mystery. Over a hundred review articles of α-synuclein have been written in the last decade, making it difficult to list all of the important studies that have added to our insight of α-synuclein physiology. Instead, we briefly review the status of α-synuclein research and propose a model based on the idea that α-synuclein may not have an intrinsic activity in cells but rather, it modifies the function of a group of protein partners that in turn affect cell processes. We propose that it is the loss of its cellular partners under oxidative conditions that promotes α-synuclein aggregation accelerating neuronal death.


α-Synuclein Protein aggregation Oxidative stress Phospholipase C 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abeliovich A, Schmitz Y, Farinas I, Choi-Lundberg D, Ho WH, Castillo PE et al (2000) Mice lacking alpha-synuclein display functional deficits in the nigrostriatal dopamine system. Neuron 25(1):239–252CrossRefGoogle Scholar
  2. Abeywardana T, Lin YH, Rott R, Engelender S, Pratt MR (2013) Site-specific differences in proteasome-dependent degradation of monoubiquitinated α-synuclein. Chem Biol 20(10):1207–1213. doi: 10.1016/j.chembiol.2013.09.009 CrossRefGoogle Scholar
  3. Ancolio K, Alves da Costa C, Ueda K, Checler F (2000) Alpha-synuclein and the Parkinson’s disease-related mutant Ala53Thr- alpha-synuclein do not undergo proteasomal degradation in HEK293 and neuronal cells. Neurosci Lett 285(2):79–82CrossRefGoogle Scholar
  4. Bartels T, Choi JG, Selkoe DJ (2011) [agr]-Synuclein occurs physiologically as a helically folded tetramer that resists aggregation. Nature 477(7362):107–110. doi: 10.1038/nature10324, CrossRefGoogle Scholar
  5. Chartier-Harlin MC, Kachergus J, Roumier C, Mouroux V, Douay X, Lincoln S et al (2004) Alpha-synuclein locus duplication as a cause of familial Parkinson’s disease. Lancet 364(9440):1167–1169. doi: 10.1016/s0140-6736(04)17103-1 CrossRefGoogle Scholar
  6. Clayton DF, George JM (1998) The synucleins: a family of proteins involved in synaptic function, plasticity, neurodegeneration and disease. Trends Neurosci 21(6):249–254CrossRefGoogle Scholar
  7. Coelho-Cerqueira E, Carmo-Goncalves P, Pinheiro AS, Cortines J, Follmer C (2013) alpha-Synuclein as an intrinsically disordered monomer–fact or artefact? FEBS J 280(19):4915–4927. doi: 10.1111/febs.12471 CrossRefGoogle Scholar
  8. Conway KA, Harper JD, Lansbury PT Jr (2000) Fibrils formed in vitro from alpha-synuclein and two mutant forms linked to Parkinson’s disease are typical amyloid. Biochemistry 39(10):2552–2563CrossRefGoogle Scholar
  9. Cuervo AM, Stefanis L, Fredenburg R, Lansbury PT, Sulzer D (2004) Impaired degradation of mutant α-synuclein by chaperone-mediated autophagy. Science 305(5688):1292–1295. doi: 10.1126/science.1101738 CrossRefGoogle Scholar
  10. Davidson WS, Jonas A, Clayton DF, George JM (1998) Stabilization of alpha-synuclein secondary structure upon binding to synthetic membranes. J Biol Chem 273(16):9443–9449CrossRefGoogle Scholar
  11. Duda JE, Lee VM, Trojanowski JQ (2000) Neuropathology of synuclein aggregates. J Neurosci Res 61(2):121–127CrossRefGoogle Scholar
  12. Eliezer D, Kutluay E, Bussell R Jr, Browne G (2001) Conformational properties of α-synuclein in its free and lipid-associated states. J Mol Biol 307(4):1061–1073. doi: 10.1006/jmbi.2001.4538 CrossRefGoogle Scholar
  13. Engelender S, Kaminsky Z, Guo X, Sharp AH, Amaravi RK, Kleiderlein JJ et al (1999) Synphilin-1 associates with alpha-synuclein and promotes the formation of cytosolic inclusions. Nat Genet 22(1):110–114CrossRefGoogle Scholar
  14. Exton JH (1996) Regulation of phosphoinositide phospholipases by hormones, neurotransmitters, and other agonists linked to G proteins. Annu Rev Pharmacol Toxicol 36:481–509CrossRefGoogle Scholar
  15. George JM (2002) The synucleins. Genome Biol 3:3002.3001–3002.3006Google Scholar
  16. George JM, Jin H, Woods WS, Clayton DF (1995) Characterization of a novel protein regulated during the critical period for song learning in the zebra finch. Neuron 15(2):361–372CrossRefGoogle Scholar
  17. Ghee M, Fournier A, Mallet J (2000) Rat alpha-synuclein interacts with tat binding protein 1, a component of the 26S proteasomal complex [In Process Citation]. J Neurochem 75(5):2221–2224CrossRefGoogle Scholar
  18. Golovko MY, Rosenberger TA, Feddersen S, Færgeman NJ, Murphy EJ (2007) α-Synuclein gene ablation increases docosahexaenoic acid incorporation and turnover in brain phospholipids. J Neurochem 101(1):201–211. doi: 10.1111/j.1471-4159.2006.04357.x CrossRefGoogle Scholar
  19. Goodwin J, Nath S, Engelborghs Y, Pountney DL (2013) Raised calcium and oxidative stress cooperatively promote alpha-synuclein aggregate formation. Neurochem Int 62(5):703–711. doi: 10.1016/j.neuint.2012.11.004 CrossRefGoogle Scholar
  20. Guo Y, Scarlata S (2013) A loss in cellular protein partners promotes α-synuclein aggregation in cells resulting from oxidative stress. Biochemistry 52(22):3913–3920. doi: 10.1021/bi4002425 CrossRefGoogle Scholar
  21. Guo Y, Rosati B, Scarlata S (2012) α-Synuclein increases the cellular level of phospholipase Cβ1. Cell Signal 24(5):1109–1114. doi: 10.1016/j.cellsig.2012.01.007 CrossRefGoogle Scholar
  22. Halliwell B (2006) Oxidative stress and neurodegeneration: where are we now? J Neurochem 97(6):1634–1658. doi: 10.1111/j.1471-4159.2006.03907.x CrossRefGoogle Scholar
  23. Hashimoto M, Takeda A, Hsu LJ, Takenouchi T, Masliah E (1999) Role of cytochrome c as a stimulator of alpha-synuclein aggregation in Lewy body disease. J Biol Chem 274(41):28849–28852CrossRefGoogle Scholar
  24. Hepler JR, Gilman AG (1992) G-proteins. Trends Biochem Sci 17:383–387CrossRefGoogle Scholar
  25. Hsu LJ, Sagara Y, Arroyo A, Rockenstein E, Sisk A, Mallory M et al (2000) α-Synuclein promotes mitochondrial deficit and oxidative stress. Am J Pathol 157(2):401–410CrossRefGoogle Scholar
  26. Iwata A, Miura S, Kanazawa I, Sawada M, Nukina N (2001) a-Synuclein forms a complex with transcription factor Elk-1. J Neurochem 77:239–252CrossRefGoogle Scholar
  27. Jakes R, Spillantini MG, Goedert M (1994) Identification of two distinct synucleins from human brain. FEBS Lett 345(1):27–32CrossRefGoogle Scholar
  28. Jenco JM, Rawlingson A, Daniels B, Morris AJ (1998) Regulation of phospholipase D2: selective inhibition of mammalian phospholipase D isoenzymes by alpha- and beta-synucleins. Biochemistry 37(14):4901–4909CrossRefGoogle Scholar
  29. Jin J, Li GJ, Davis J, Zhu D, Wang Y, Pan C et al (2007) Identification of novel proteins associated with both alpha-synuclein and DJ-1. Mol Cell Proteomics 6(5):845–859. doi: 10.1074/mcp.M600182-MCP200 CrossRefGoogle Scholar
  30. Lee FJ et al (2001) Direct binding and functional coupling of alpha-synuclein to the dopamine transporters accelerate dopamine-induced apoptosis. FASEB J 15:916–926CrossRefGoogle Scholar
  31. Lee HJ, Choi C, Lee SJ (2002) Membrane-bound alpha-synuclein has a high aggregation propensity and the ability to seed the aggregation of the cytosolic form. J Biol Chem 277:671–678CrossRefGoogle Scholar
  32. Leng Y, Chase TN, Bennett MC (2001) Muscarininc receptor stimulation induces translocation of an alpha-synuclein oligomer from plasma membrane to a light vesicles fraction in cytoplasm. J Biol Chem 276:28212–28218CrossRefGoogle Scholar
  33. Li W, Yang Q, Mao Z (2011) Chaperone-mediated autophagy: machinery, regulation and biological consequences. Cell Mol Life Sci 68(5):749–763CrossRefGoogle Scholar
  34. Lotharius J, Brundin P (2002) Impaired dopamine storage resulting from alpha-synuclein mutation may contribute to the pathogensis of Parkinson’s disease. Hum Mol Genet 11:2395–2407CrossRefGoogle Scholar
  35. Lundvig D, Lindersson E, Jensen PH (2005) Pathogenic effects of α-synuclein aggregation. Mol Brain Res 134(1):3–17. doi: 10.1016/j.molbrainres.2004.09.001 CrossRefGoogle Scholar
  36. Middleton ER, Rhoades E (2010) Effects of curvature and composition on ± −synuclein binding to lipid vesicles. Biophys J 99(7):2279–2288CrossRefGoogle Scholar
  37. Mizuno Y, Hattori N, Kubo S-I, Sato S, Nishioka K, Hatano T et al (2008) Progress in the pathogenesis and genetics of Parkinson’s disease. Phil Trans R Soc B Biol Sci 363(1500):2215–2227. doi: 10.1098/rstb.2008.2273 CrossRefGoogle Scholar
  38. Murphy DD, Rueter SM, Trojanowski JQ, Lee VM (2000) Synucleins are developmentally expressed, and alpha-synuclein regulates the size of the presynaptic vesicular pool in primary hippocampal neurons. J Neurosci 20(9):3214–3220Google Scholar
  39. Narayanan V, Scarlata S (2001) Membrane binding and self-association of alpha-synuclein. Biochemistry 40:9927–9934CrossRefGoogle Scholar
  40. Narayanan V, Guo Y, Scarlata S (2005) Fluorescence studies suggest a role for a-synuclein in the phosphatdiylinositol lipid signaling pathway. Biochemistry 44:462–470CrossRefGoogle Scholar
  41. Ostrerova N, Petrucelli L, Farrer M, Mehta N, Choi P, Hardy J et al (1999) a-Synuclein shares physical and functional homology with 14-3-3 proteins. J Neurosci 19(14):5782–5791Google Scholar
  42. Parsian A, Racette B, Zhang ZH, Chakraverty S, Rundle M, Goate A et al (1998) Mutation, sequence analysis, and association studies of alpha-synuclein in Parkinson’s disease. Neurology 51(6):1757–1759CrossRefGoogle Scholar
  43. Philip F, Guo Y, Aisiku O, Scarlata S (2012) Phospholipase Cβ1 is linked to RNA interference of specific genes through translin-associated factor X. FASEB J 26:4903–4913. doi: 10.1096/fj.12-213934 CrossRefGoogle Scholar
  44. Pronin AN, Morris AJ, Surguchov A, Benovic JL (2000) Synucleins are a novel class of substrates for G protein-coupled receptor kinases. J Biol Chem 275(34):26515–26522CrossRefGoogle Scholar
  45. Rebecchi MJ, Pentyala SN (2000) Structure, function, and control of phosphoinositide-specific phospholipase C. Physiol Rev 80:1291–1335Google Scholar
  46. Singleton AB, Farrer M, Johnson J, Singleton A, Hague S, Kachergus J et al (2003) a-Synuclein locus triplication causes Parkinson’s disease. Science 302:841CrossRefGoogle Scholar
  47. Stefanis L, Kholodilov N, Rideout HG, Burke RE, Greene LA (2001) Synuclein-1 is selectively up-regulated in response to nerve growth factor treatment in PC12 cells. J Neurochem 76:1165–1176CrossRefGoogle Scholar
  48. Suh P, Park J, Manzoli L, Cocco L, Peak J, Katan M et al (2008) Multiple roles of phosphoinositide-specific phospholipase C isozymes. BMB Rep 41:415–434CrossRefGoogle Scholar
  49. Tabrizi SJ, Orth M, Wilkinson JM, Taanman JW, Warner TT, Cooper JM et al (2000) Expression of mutant alpha-synuclein causes increased susceptibility to dopamine toxicity [In Process Citation]. Hum Mol Genet 9(18):2683–2689CrossRefGoogle Scholar
  50. van Hemert MJ, Steensma HY, van Heusden GPH (2001) 14-3-3 proteins: key regulators of cell division, signalling and apoptosis. BioEssays 23(10):936–946. doi: 10.1002/bies.1134 CrossRefGoogle Scholar
  51. Wan OW, Chung KKK (2012) The role of alpha-synuclein oligomerization and aggregation in cellular and animal models of Parkinson’s disease. PLoS ONE 7(6):e38545. doi: 10.1371/journal.pone.0038545 CrossRefGoogle Scholar
  52. Wang W, Perovic I, Chittuluru J, Kaganovich A, Nguyen LTT, Liao J et al (2011) A soluble α-synuclein construct forms a dynamic tetramer. Proc Natl Acad Sci 108(43):17797–17802. doi: 10.1073/pnas.1113260108 CrossRefGoogle Scholar
  53. Weinreb PH, Zhen W, Poon AW, Conway KA, Lansbury PT Jr (1996) NACP, a protein implicated in Alzheimer’s disease and learning, is natively unfolded. Biochemistry 35(43):13709–13715CrossRefGoogle Scholar
  54. Zhou W, Hurlbert MS, Schaack J, Prasad KN, Freed CR (2000) Overexpression of human alpha-synuclein causes dopamine neuron death in rat primary culture and immortalized mesencephalon-derived cells. Brain Res 866(1–2):33–43Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Physiology & BiophysicsStony Brook UniversityStony BrookUSA

Personalised recommendations