Journal of Bioenergetics and Biomembranes

, Volume 46, Issue 2, pp 99–107 | Cite as

Soy isoflavones and cellular mechanics

  • Vladimir Z. Ajdžanović
  • Ivana M. Medigović
  • Jasmina B. Pantelić
  • Verica Lj. Milošević


Soy isoflavones are diphenolic compounds that are frequently used for alternative treatment of ageing symptoms in both genders. They operate at principally two hierarchical levels of functional organization – cellular and molecular, while these ‘types’ of action appear to have indefinite borders. Soy isoflavone action at the cellular level involves inter alia the effects on cell mechanics. This epigenetic and modular determinant of cell function and fate is defined by: the anchorage to extracellular matrix (ECM) and neighboring cells, cytoskeleton organization, membrane tension and vesicle trafficking. Soy isoflavones have been reported to: (i) generally fashion an inert cell phenotype in some cancers and enhance the cell anchorage in connective tissues, via the effects on ECM proteins, focal adhesion kinases-mediated events and matrix metalloproteinases inhibition; (ii) affect cytoskeleton integrity, the effects being related to Ca2+ ions fluxes and involving cell retraction or differentiation/proliferation-related variations in mechanical status; (iii) increase, remain “silent” or decrease membrane tension/fluidity, which depends on polarity and a number and arrangement of functional groups in applied isoflavone; (iv) provoke inhibitory effects on vesicle trafficking and exo-/endocytosis, which are usually followed by changed cell morphology. Here we present and discuss the abundance of effects arising from cells’ “encounter” with soy isoflavones, focusing on different morphofunctional definers of cell mechanics.


Soy isoflavones Extracellular matrix Cytoskeleton Membrane Vesicle trafficking 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aalinkeel R, Hu Z, Nair BB, Sykes DE, Reynolds JL, Mahajan SD et al (2010) Genomic analysis highlights the role of the JAK-STAT signaling in the anti-proliferative effects of dietary flavonoid-‘Ashwagandha’ in prostate cancer cells. Evid Based Complement Alternat Med/eCAM 7(2):177–187CrossRefGoogle Scholar
  2. Adlercreutz H, Mazur W (1997) Phyto-oestrogens and Western Diseases. Ann Med 29(2):95–120CrossRefGoogle Scholar
  3. Ajdžanović V, Šošić-Jurjević B, Filipović B, Trifunović S, Brkić D, Sekulić M et al (2009) Genistein affects the morphology of pituitary ACTH cells and decreases circulating levels of ACTH and corticosterone in middle-aged male rats. Biol Res 42(1):13–23Google Scholar
  4. Ajdžanović V, Spasojević I, Filipović B, Šošić-Jurjević B, Sekulić M, Milošević V (2010) Effects of genistein and daidzein on erythrocyte membrane fluidity: an electron paramagnetic resonance study. Can J Physiol Pharmacol 88(4):497–500CrossRefGoogle Scholar
  5. Ajdžanović V, Spasojević I, Šošić-Jurjević B, Filipović B, Trifunović S, Sekulić M et al (2011a) The negative effect of soy extract on erythrocyte membrane fluidity: an electron paramagnetic resonance study. J Membr Biol 239(3):131–135CrossRefGoogle Scholar
  6. Ajdžanović V, Šošić-Jurjević B, Filipović B, Trifunović S, Milošević V (2011b) Daidzein effects on ACTH cells: immunohistomorphometric and hormonal study in an animal model of the andropause. Histol Histopathol 26(10):1257–1264Google Scholar
  7. Ajdžanović V, Milošević V, Spasojević I (2012) Glucocorticoid excess and disturbed hemodynamics in advanced age: the extent to which soy isoflavones may be beneficial. Gen Physiol Biophys 31(4):367–374CrossRefGoogle Scholar
  8. Ajdžanović V, Mojić M, Maksimović-Ivanić D, Bulatović M, Mijatović S, Milošević V et al (2013) Membrane fluidity, invasiveness and dynamic phenotype of metastatic prostate cancer cells after treatment with soy isoflavones. J Membr Biol 246(4):307–314CrossRefGoogle Scholar
  9. Akiyama T, Ishida J, Nakagawa S, Ogawara H, Watanabe S, Itoh N et al (1987) Genistein, a specific inhibitor of tyrosine-specific protein kinases. J Biol Chem 262(12):5592–5595Google Scholar
  10. Andres S, Abraham K, Appel KE, Lampen A (2011) Risks and benefits of dietary isoflavones for cancer. Crit Rev Toxicol 41(6):463–506CrossRefGoogle Scholar
  11. Arora A, Byrem TM, Nair MG, Strasburg GM (2000) Modulation of liposomal membrane fluidity by flavonoids and isoflavonoids. Arch Biochem Biophys 373(1):102–109CrossRefGoogle Scholar
  12. Asnacios A, Hamant O (2012) The mechanics behind cell polarity. Trends Cell Biol. doi: 10.1016/j.tcb.2012.08.005 Google Scholar
  13. Azios NG, Dharmawardhane SF (2005) Role of soy phytoestrogens genistein and daidzein in focal adhesion assembly and focal adhesion kinase activity in breast cancer cells. In: Li JJ, Li SA, Llombart-Bosch A (eds) Hormonal carcinogenesis IV. Springer Science + Business Media, Inc., New York, USA, pp 300–308CrossRefGoogle Scholar
  14. Barnes S (2010) The biochemistry, chemistry and physiology of the isoflavones in soybeans and their food products. Lymphat Res Biol 8(1):89–98CrossRefGoogle Scholar
  15. Beck V, Rohr U, Jungbauer A (2005) Phytoestrogens derived from red clover: an alternative to estrogen replacement therapy? J Steroid Biochem Mol Biol 94(5):499–518CrossRefGoogle Scholar
  16. Bershadsky AD, Balaban NQ, Geiger B (2003) Adhesion-dependent cell mechanosensitivity. Annu Rev Cell Dev Biol 19:677–695CrossRefGoogle Scholar
  17. Brown AEX, Discher DE (2009) Conformational changes and signaling in cell and matrix physics. Curr Biol 19(17):R781–R789CrossRefGoogle Scholar
  18. Casini ML, Marelli G, Papaleo E, Ferrari A, D’Ambrosio F, Unfer V (2006) Psychological assessment of the effects of treatment with phytoestrogens on postmenopausal women: a randomized, double-blind, crossover, placebo-controlled study. Fertil Steril 85(4):972–978CrossRefGoogle Scholar
  19. Chen JW, Zhu ZQ, Hu TX, Zhu DY (2002) Structure-activity relationship of natural flavonoids in hydroxyl-radical scavenging effects. Acta Pharmacol Sin 23(7):667–672Google Scholar
  20. Choi EM, Suh KS, Kim YS, Choue RW, Koo SJ (2001) Soybean ethanol extract increases the function of osteoblastic MC3T3-E1 cells. Phytochemistry 56(7):733–739CrossRefGoogle Scholar
  21. Divi RL, Chang HC, Doerge DR (1997) Anti-thyroid isoflavones from soybean: isolation, characterization, and mechanisms of action. Biochem Pharmacol 54(10):1087–1096CrossRefGoogle Scholar
  22. Dixon RA, Ferreira D (2002) Genistein. Phytochemistry 60(3):205–211CrossRefGoogle Scholar
  23. dos Santos T, Varela J, Lynch I, Salvati A, Dawson KA (2011) Effects of transport inhibitors on the cellular uptake of carboxylated polystyrene nanoparticles in different cell lines. PLoS ONE 6(9):e24438CrossRefGoogle Scholar
  24. Duluc L, Soleti R, Clere N, Andriantsitohaina R, Simard G (2012) Mitochondria as potential targets of flavonoids: focus on adipocytes and endothelial cells. Curr Med Chem 19(26):4462–4474CrossRefGoogle Scholar
  25. Fletcher DA, Dyche Mullins R (2010) Cell mechanics and the cytoskeleton. Nature 463(7280):485–492CrossRefGoogle Scholar
  26. Gopaul R, Knaggs HE, Lephart ED (2012) Biochemical investigation and gene analysis of equol: a plant and soy-derived isoflavonoid with antiaging and antioxidative properties with potential human skin applications. Biofactors 38(1):44–52CrossRefGoogle Scholar
  27. Gu Y, Zhu CF, Dai YL, Zhong Q, Sun B (2009) Inhibitory effects of genistein on metastasis of human hepatocellular carcinoma. World J Gastroenterol 15(39):4952–4957CrossRefGoogle Scholar
  28. Hirvonen J, Rajalin AM, Wohlfahrt G, Adlercreutz H, Wähälä K, Aarnisalo P (2011) Transcriptional activity of estrogen-related receptor γ (ERRγ) is stimulated by the phytoestrogen equol. J Steroid Biochem Mol Biol 123(1–2):46–57CrossRefGoogle Scholar
  29. Huang X, Chen S, Xu L, Liu Y, Deb DK, Platanias LC et al (2005) Genistein inhibits p38 map kinase activation, matrix metalloproteinase type 2, and cell invasion in human prostate epithelial cells. Cancer Res 65(8):3470–3478Google Scholar
  30. Kajiya H, Okabe K, Okamoto F, Tsuzuki T, Soeda H (2000) Protein tyrosine kinase inhibitors increase cytosolic calcium and inhibit actin organization as resorbing activity in rat osteoclasts. J Cell Physiol 183(1):83–90CrossRefGoogle Scholar
  31. Kalaiselvan V, Kalaivani M, Vijayakumar A, Sureshkumar K, Venkateskumar K (2010) Current knowledge and future direction of research on soy isoflavones as a therapeutic agents. Pharmacogn Rev 4(8):111–117CrossRefGoogle Scholar
  32. Kampa M, Papakonstanti EA, Hatzoglou A, Stathopoulos EN, Stournaras C, Castanas E (2002) The human prostate cancer cell line LNCaP bears functional membrane testosterone receptors, which increase PSA secretion and modify actin cytoskeleton. FASEB J 16(11):1429–1431Google Scholar
  33. Kousidou OC, Mitropoulou TN, Roussidis AE, Kletsas D, Theocharis AD, Karamanos NK (2005) Genistein suppresses the invasive potential of human breast cancer cells through transcriptional regulation of metalloproteinases and their tissue inhibitors. Int J Oncol 26(4):1101–1109Google Scholar
  34. Kruk I, Aboul-Enein HY, Michalska T, Lichszteld K, Kladna A (2005) Scavenging of reactive oxygen species by the plant phenols genistein and oleuropein. Luminescence 20(2):81–89CrossRefGoogle Scholar
  35. Kuiper GG, Carlsson B, Grandien K, Enmark E, Haggblad J, Nilsson S et al (1997) Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors alpha and beta. Endocrinology 138(3):863–870Google Scholar
  36. Kuzdzal M, Wesolowska O, Strancar J, Michalak K (2011) Fluorescence and ESR spectroscopy studies on the interaction of isoflavone genistein with biological and model membranes. Chem Phys Lipids 164(4):283–291CrossRefGoogle Scholar
  37. Lakshman M, Xu L, Ananthanarayanan V, Cooper J, Takimoto CH, Helenowski I et al (2008) Dietary genistein inhibits metastasis of human prostate cancer in mice. Cancer Res 68(6):2024–2032CrossRefGoogle Scholar
  38. Lehmann L, Esch HL, Wagner J, Rohnstock L, Metzler M (2005) Estrogenic and genotoxic potential of equol and two hydroxylated metabolites of Daidzein in cultured human Ishikawa cells. Toxicol Lett 158(1):72–86CrossRefGoogle Scholar
  39. Levayer R, Lecuit T (2012) Biomechanical regulation of contractility: spatial control and dynamics. Trends Cell Biol 22(2):61–81CrossRefGoogle Scholar
  40. Li Y, Kucuk O, Hussain M, Abrams J, Cher ML, Sarkar FH (2006) Antitumor and antimetastatic activities of docetaxel are enhanced by genistein through regulation of osteoprotegerin/receptor activator of nuclear factor-kappaB (RANK)/RANK ligand/MMP-9 signaling in prostate cancer. Cancer Res 66(9):4816–4825CrossRefGoogle Scholar
  41. Li Y, Kong D, Bao B, Ahmad A, Sarkar FH (2011a) Induction of cancer cell death by isoflavone: the role of multiple signaling pathways. Nutrients 3(10):877–896CrossRefGoogle Scholar
  42. Li HY, Liao CY, Lee KH, Chang HC, Chen YJ, Chao KC et al (2011b) Collagen IV significantly enhances migration of embryonic stem cells: involvement of α2β1 integrin-mediated remodeling. Cell Transplant 20(6):893–907CrossRefGoogle Scholar
  43. Liew R, MacLeod KT, Collins P (2003) Novel stimulatory actions of the phytoestrogen genistein: effects on the gain of cardiac excitation-contraction coupling. FASEB J 17(10):1307–1319Google Scholar
  44. Liu Y, Kyle E, Lieberman R, Crowell J, Kelloff G, Bergan RC (2000) Focal adhesion kinase (FAK) phosphorylation is not required for genistein-induced FAK-β-1-integrin complex formation. Clin Exp Metastasis 18(3):203–212CrossRefGoogle Scholar
  45. Liu D, Zhen W, Yang Z, Carter JD, Si H, Reynolds KA (2006) Genistein acutely stimulates insulin secretion in pancreatic β-cells through a cAMP-dependent protein kinase pathway. Diabetes 55(4):1043–1050CrossRefGoogle Scholar
  46. Liu M, Yanagihara N, Toyohira Y, Tsutsui M, Ueno S, Shinohara Y (2007) Dual effects of daidzein, a soy isoflavone, on catecholamine synthesis and secretion in cultured bovine adrenal medullary cells. Endocrinology 148(11):5348–5354CrossRefGoogle Scholar
  47. Maxfield FR, Tabas I (2005) Role of cholesterol and lipid organization in disease. Nature 438(7068):612–621CrossRefGoogle Scholar
  48. Mentor-Marcel R, Lamartiniere CA, Eltoum IA, Greenberg NM, Elgavish A (1995) Dietary genistein improves survival and reduces expression of osteopontin in the prostate of transgenic mice with prostatic adenocarcinoma (TRAMP). J Nutr 135(5):989–995Google Scholar
  49. Messina M (2010) Insights gained from 20 years of soy research. J Nutr 140(12):2289S–2295SCrossRefGoogle Scholar
  50. Messina M, Ho S, Alekel DL (2010) Skeletal benefits of soy isoflavones: a review of the clinical trial and epidemiologic data. Curr Opin Clin Nutr Metab Care 7(6):649–658CrossRefGoogle Scholar
  51. Mezei O, Banz WJ, Steger RW, Peluso MR, Winters TA, Shay N (2003) Soy isoflavones exert antidiabetic and hypolipidemic effects through the PPAR pathways in obese Zucker rats and murine RAW 264.7 cells. J Nutr 133(5):1238–1243Google Scholar
  52. Milenkovic D, Deval C, Gouranton E, Landrier JF, Scalbert A, Morand C et al (2012) Modulation of miRNA expression by dietary polyphenols in apoE deficient mice: a new mechanism of the action of polyphenols. PLoS ONE 7(1):e29837CrossRefGoogle Scholar
  53. Milošević V, Ajdžanović V, Šošić-Jurjević B, Filipović B, Brkić M, Nestorović N et al (2009) Morphofunctional characteristics of ACTH cells in middle-aged male rats after treatment with genistein. Gen Physiol Biophys 28(1):94–97CrossRefGoogle Scholar
  54. Morris C, Thorpe J, Ambrosio L, Santin M (2006) The soybean isoflavone genistein induces differentiation of MG63 human osteosarcoma osteoblasts. J Nutr 136(5):1166–1170Google Scholar
  55. Mukherjee S, Acharya BR, Bhattacharyya B, Chakrabarti G (2010) Genistein arrests cell cycle progression of A549 cells at the G(2)/M phase and depolymerizes interphase microtubules through binding to a unique site of tubulin. Biochemistry-US 49(8):1702–1712CrossRefGoogle Scholar
  56. Mukhopadhyay NK, Gordon GJ, Chen CJ, Bueno R, Sugarbaker DJ, Jaklitsch MT (2005) Activation of focal adhesion kinase in human lung cancer cells involves multiple and potentially parallel signaling events. J Cell Mol Med 9(2):387–397CrossRefGoogle Scholar
  57. Nicolas A, Safran SA (2006) Limitation of cell adhesion by the elasticity of the extracellular matrix. Biophys J 91(1):61–73CrossRefGoogle Scholar
  58. Oates A, Barraclough R, Rudland P (1996) The identification of osteopontin as a metastasis-associated gene product in a rodent mammary tumor model. Oncogene 13(1):97–104Google Scholar
  59. Oh HY, Leem J, Yoon SJ, Yoon S, Hong SJ (2010) Lipid raft cholesterol and genistein inhibit the cell viability of prostate cancer cells via the partial contribution of EGFR-Akt/p70S6k pathway and down-regulation of androgen receptor. Biochem Biophys Res Commun 393(2):319–324CrossRefGoogle Scholar
  60. Ohno S, Shinoda S, Toyoshima S, Nakazawa H, Makino T, Nakajin S (2002) Effects of flavonoid phytochemicals on cortisol production and on activities of steroidogenic enzymes in human adrenocortical H295R cells. J Steroid Biochem Mol Biol 80(3):355–363CrossRefGoogle Scholar
  61. Ohno S, Nakajima Y, Inoue K, Nakazawa H, Nakajin S (2003) Genistein administration decreases serum corticosterone and testosterone levels in rats. Life Sci 74(6):733–742CrossRefGoogle Scholar
  62. Pawlikowska-Pawlega B, Misiak LE, Zarzyka B, Paduch R, Gawron A, Gruszecki WI (2012) Localization and interaction of genistein with model membranes formed with dipalmitoylphosphatidylcholine (DPPC). Biochim Biophys Acta (BBA–Biomembranes) 1818(7):1785–1793CrossRefGoogle Scholar
  63. Piao M, Mori D, Satoh T, Sugita Y, Tokunaga O (2006) Inhibition of endothelial cell proliferation, in vitro angiogenesis, and the down regulation of cell adhesion-related genes by genistein. Combined with a cDNA microarray analysis. Endothelium. J Endothelial Cell Res 13(4):249–266Google Scholar
  64. Pugalendhi P, Manoharan S, Suresh K, Baskaran N (2011) Genistein and daidzein, in combination, protect cellular integrity during 7,12-dimethylbenz[a]anthracene (DMBA) induced mammary carcinogenesis in Sprague–Dawley rats. Afr J Tradit Complement Altern Med 8(2):91–97Google Scholar
  65. Raghunathan M, Zubovski Y, Venable RM, Pastor RW, Nagle JF, Tristram-Nagle S (2012) Structure and elasticity of lipid membranes with genistein and daidzein bioflavinoids using x-ray scattering and MD simulations. J Phys Chem B Condens Matter Mater Surf Interfaces Biophys 116(13):3918–3927Google Scholar
  66. Ryschich E, Khamidjanov A, Kerkadze V, Büchler MW, Zöller M, Schmidt J (2009) Promotion of tumor cell migration by extracellular matrix proteins in human pancreatic cancer. Pancreas 38(7):804–810CrossRefGoogle Scholar
  67. Sawai H, Okada Y, Funahashi H, Matsuo Y, Takahashi H, Takeyama H et al (2005) Activation of focal adhesion kinase enhances the adhesion and invasion of pancreatic cancer cells via extracellular signal-regulated kinase-1/2 signaling pathway activation. Mol Cancer 4:37CrossRefGoogle Scholar
  68. Senger DR, Ledbetter SR, Claffey KP, Papadopoulos-Sergiou A, Peruzzi CA, Detmar M (1996) Stimulation of endothelial cell migration by vascular permeability factor/vascular endothelial growth factor through cooperative mechanisms involving the alphavbeta 3 integrin, osteopontin, and thrombin. Am J Pathol 149(1):293–305Google Scholar
  69. Setchell KDR (1998) Phytoestrogens: the biochemistry, physiology, and implications for human health of soy isoflavones. Am J Clin Nutr 68(6Suppl):1333S–1346SGoogle Scholar
  70. Shieh DB, Li RY, Liao JM, Chen GD, Liou YM (2010) Effects of genistein on β-catenin signaling and subcellular distribution of actin-binding proteins in human umbilical CD 105-positive stromal cells. J Cell Physiol 223(2):423–434Google Scholar
  71. Simon SI, Schmid-Schönbein GW (1990) Kinematics of cytoplasmic deformation in neutrophils during active motion. J Biomech Eng Trans ASME Am Soc Mech Eng 112(3):303–310CrossRefGoogle Scholar
  72. Stetler-Stevenson WG, Yu AE (2001) Proteases in invasion: matrix metalloproteinases. Semin Cancer Biol 11(2):143–152CrossRefGoogle Scholar
  73. Takeuchi S, Takahashi T, Sawada Y, Iida M, Matsuda T, Kojima H (2009) Comparative study on the nuclear hormone receptor activity of various phytochemicals and their metabolites by reporter gene assays using Chinese hamster ovary cells. Biol Pharm Bull 32(2):195–202CrossRefGoogle Scholar
  74. Thalmann G, Sikes R, Devoll R, Kiefer J, Markwalder R, Klima I et al (1999) Osteopontin: possible role in prostate cancer progression. Clin Cancer Res 5(8):2271–2277Google Scholar
  75. Tiyasatkulkovit W, Charoenphandhu N, Wongdeea K, Thongbunchoo J, Krishnamra N, Malaivijitnond S (2012) Upregulation of osteoblastic differentiation marker mRNA expression in osteoblast-like UMR106 cells by puerarin and phytoestrogens from Pueraria mirifica. Phytomedicine 19(13):1147–1155CrossRefGoogle Scholar
  76. Tsuchiya H, Nagayama M, Tanaka T, Furusawa M, Kashimata M, Takeuchi H (2002) Membrane-rigidifying effects of anti-cancer dietary factors. Biofactors 16(3–4):45–56CrossRefGoogle Scholar
  77. Wu T, Sikes R, Cui Q, Kao C, Murphy C, Yang H et al (1998) Establishing human prostate cancer cell xenografts in bone: induction of osteoblastic reaction by PSA producing tumors in athymic and SCID mice using LNCaP and lineage related metastatic sublines. Int J Cancer 77(6):887–894CrossRefGoogle Scholar
  78. Yi K, Unruh JR, Deng M, Slaughter BD, Rubinstein B, Li R (2011) Dynamic maintenance of asymmetric meiotic spindle position through Arp2/3-complex-driven cytoplasmic streaming in mouse oocytes. Nat Cell Biol 13(10):1252–1258CrossRefGoogle Scholar
  79. Yokoshiki H, Sumii K, Sperelakis N (1996) Inhibition of L-type calcium current in rat ventricular cells by the tyrosine kinase inhibitor, genistein and its inactive analog daidzein. J Mol Cell Cardiol 28(4):807–814CrossRefGoogle Scholar
  80. Yuan WJ, Jia FY, Jian-Zhong Meng MM (2009) Effects of genistein on secretion of extracellular matrix components and transforming growth factor beta in high-glucose-cultured rat mesangial cells. J Artif Organs 12(4):242–246CrossRefGoogle Scholar
  81. Zhang QH, Hu YZ, Zhou SS, Wang FZ (2001) Inhibitory effect of genistein on the proliferation of the anterior pituitary cells of rats. Sheng Li Xue Bao 53(1):51–54Google Scholar
  82. Zicha J, Kunes J, Devynck MA (1999) Abnormalities of membrane function and lipid metabolism in hypertension. Am J Hypertens 12(3):315–331CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Vladimir Z. Ajdžanović
    • 1
  • Ivana M. Medigović
    • 1
  • Jasmina B. Pantelić
    • 1
  • Verica Lj. Milošević
    • 1
  1. 1.Department of Cytology, Institute for Biological Research “Siniša Stanković”University of BelgradeBelgradeSerbia

Personalised recommendations