Skip to main content
Log in

Independent and additive effects of atenolol and methionine restriction on lowering rat heart mitochondria oxidative stress

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

A low rate of mitochondrial ROS production (mitROSp) and a low degree of fatty acid unsaturation are characteristic traits of long-lived animals and can be obtained in a single species by methionine restriction (MetR) or atenolol (AT) treatments. However, simultaneous application of both treatments has never been performed. In the present investigation it is shown that MetR lowers mitROSp and complex I content. Both the MetR and the AT treatments lower protein oxidative modification and oxidative damage to mtDNA and the fatty acid unsaturation degree in rat heart mitochondria. The decrease in fatty acid unsaturation seems to be due, at least in part, to decreases in desaturase and elongase activities or peroxisomal β-oxidation. Furthermore, the phosphorylation of extracellular signal-regulated kinase (ERK) was stimulated by MetR and AT. The decrease in membrane fatty acid unsaturation and protein oxidation, and the changes in fatty acids and p-ERK showed additive effects of both treatments. In addition, the increase in mitROSp induced by AT observed in the present investigation was totally avoided with the combined MetR + AT treatment. It is concluded that the simultaneous treatment with MetR plus atenolol is more beneficial than either single treatment alone to lower oxidative stress in rat heart mitochondria, analogously to what has been reported in long-lived animal species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albring M, Griffith J, Attardi G (1977) Association of a protein structure of probable membrane derivation with HeLa cell mitochondrial DNA near its origin of replication. PNAS 74:1348–1352

    Article  CAS  Google Scholar 

  • Asunción JG, Millan A, Pla R, Bruseghini L, Esteras A, Pallardo FV, Sastre J, Viña J (1996) Mitochondrial glutathione oxidation correlates with age-associated oxidative damage to mitochondrial DNA. FASEB J 10:333–338

    Google Scholar 

  • Barja G (2002) The quantitative measurement of H2O2 generation in isolated mitochondria. J Bioenerg Biomembr 34:227–233

    Article  CAS  Google Scholar 

  • Barja G (2004a) Aging in vertebrates and the effect of caloric restriction: a mitochondrial free radical production-DNA damage mechanism? Biol Rev 79:235–251

    Article  Google Scholar 

  • Barja G (2004b) Free radicals and aging. Trends Neurosci 27:595–600

    Article  CAS  Google Scholar 

  • Bell EL, Guarente L (2011) The SirT3 divining rod points to oxidative stress. Mol Cell 42:561–568

    Article  CAS  Google Scholar 

  • Caro P, Gomez J, Lopez-Torres M, Sanchez I, Naudi A, Jove M, Pamplona R, Barja G (2008) Forty percent and eighty percent methionine restriction decrease mitochondrial ROS generation and oxidative stress in rat liver. Biogerontology 9:183–196

    Article  CAS  Google Scholar 

  • Caro P, Gomez J, Sanchez I, Naudi A, Ayala V, López-Torres M, Pamplona R, Barja G (2009) Forty percent methionine restriction decreases mitochondrial oxygen radical production and leak at complex I during forward electron flow and lowers oxidative damage to proteins and mitochondrial DNA in rat kidney and brain mitochondria. Rejuv Res 12:421–434

    Article  CAS  Google Scholar 

  • Dhabi JM, Monte PL, Wingo J, Rowley BC, Cao SX, Waldford RL, Spindler SR (2001) Caloric restriction alters the feeding response of key metabolic enzyme genes. Mech Ageing Dev 122:1033–1048

    Article  Google Scholar 

  • Gredilla R, Barja G (2005) The role of oxidative stress in relation to caloric restriction and longevity. Endocrinology 146:3713–3717

    Article  CAS  Google Scholar 

  • Guillou H, Zadravec D, Martin PG, Jacobsson A (2010) The key roles of elongases and desaturases in mammalian fatty acid metabolism: insights from transgenic mice. Prog Lipid Res 49:186–199

    Article  CAS  Google Scholar 

  • Harman D (1972) The biological clock: the mitochondria. J Am Geriatr Soc 20:145–147

    CAS  Google Scholar 

  • Holt IJ, He J, Mao C, Boyd-Kirkup JD, Martinsson P, Sembongi H, Reyes A, Spelbrnk JN (2007) Mammalian mitochondrial nucleoids: organizing an independently minded genome. Mitochondrion 7:311–321

    Article  CAS  Google Scholar 

  • Hulbert AJ, Pamplona R, Buffenstein R, Buttemer WA (2007) Life and death: metabolic rate, membrane composition, and life span of animals. Physiol Rev 87:1175–1213

    Article  CAS  Google Scholar 

  • Kalhan SC, Uppal SO, Moorman JL, Bennett C, Gruca LL, Parimi PS, Dasarathy S, Serre D, Hanson RW (2011) Metabolic and genomic response to dietary isocaloric protein restriction in the rat. J Biol Chem 286:5266–5277

    Article  CAS  Google Scholar 

  • Latorre A, Moya A, Ayala A (1986) Evolution of mitochondrial DNA in Drosophila suboscura. PNAS 83:8649–8653

    Article  CAS  Google Scholar 

  • Lopez-Torres M, Barja G (2008) Lowered methionine ingestion as responsible for the decrease in rodent mitochondrial oxidative stress in protein and dietary restriction possible implications for humans. Biochim Biophys Acta 1780:1337–1347

    Article  CAS  Google Scholar 

  • Mela L, Seitz S (1997) Isolation of mitochondria with emphasis on heart mitochondria from small amounts of tissue. Methods Enzymol 55:39–46

    Article  Google Scholar 

  • Miller RA, Buehner G, Chang Y, Harper JM, Sigler R, Smith-Wheelock M (2005) Methionine-deficient diet extends mouse lifespan, slows immune and lens aging, alters glucose, T4, IGF-I and insulin levels, and increases hepatocyte MIF levels and stress resistance. Aging Cell 4:119–125

    Article  CAS  Google Scholar 

  • Orentreich N, Matias JR, DeFelice A, Zimmerman JA (1993) Low methionine ingestion by rats extends life span. J Nutr 123:269–274

    CAS  Google Scholar 

  • Pamplona R (2011) Advanced lipoxidation end-products. Chem Biol Interact 192:14–20

    Article  CAS  Google Scholar 

  • Pamplona R, Barja G (2006) Mitochondrial oxidative stress, aging and caloric restriction: the protein and methionine connection. Biochim Biophys Acta 1757:496–508

    Article  CAS  Google Scholar 

  • Pamplona R, Barja G (2011) An evolutionary comparative scan for longevity-related oxidative stress resistance mechanisms in homeotherms. Biogerontology 12:409–435

    Article  CAS  Google Scholar 

  • Pamplona R, Barja G, Portero-Otín M (2002) Membrane fatty acid unsaturation, protection against oxidative stress, and maximum life span: a homeoviscous-longevity adaptation. Ann New York Acad Sci 959:475–490

    Article  CAS  Google Scholar 

  • Pamplona R, Portero-Otín M, Sanz A, Requena J, Barja G (2004) Modification of the longevity-related degree of fatty acid unsaturation modulates oxidative damage to proteins and mitochondrial DNA in liver and brain. Exper Gerontol 39:725–733

    Article  CAS  Google Scholar 

  • Pamplona R, Dalfó E, Ayala V, Bellmunt MJ, Prat J, Ferrer I, Portero-Otín M (2005) Proteins in human brain cortex are modified by oxidation, glycoxidation, and lipoxidation. Effects of Alzheimer disease and identification of lipoxidation targets. J Biol Chem 280:21522–21530

    Article  CAS  Google Scholar 

  • Perrone CE, Mattocks DAL, Plummer JD, Chittur SV, Mohney R, Vignola K, Orentreich DS, Orentreich N (2012) Genomic and metabolic responses to methionine-restricted and methionine-restricted, cysteine-supplemented diets in Fischer 344 rat inguinal adipose tissue, liver and quadriceps muscle. J Nutrigenet Nutrigenomics 5:132–157

    Article  CAS  Google Scholar 

  • Porter AG, Urbano AG (2006) Does apoptosis-inducing factor (AIF) have both life and death functions in cells? Bioessays 28:834–843

    Article  CAS  Google Scholar 

  • Richie JP Jr, Leutzinger Y, Parthasarathy S, Malloy V, Orentreich N, Zimmerman JA (1994) Methionine restriction increases blood glutathione and longevity in F344 rats. FASEB J 8:1302–1307

    CAS  Google Scholar 

  • Sanchez-Roman I, Gomez J, Naudi A, Ayala V, Portero-Otín M, Lopez-Torres M, Pamplona R, Barja G (2010) The β-blocker atenolol lowers the longevity-related degree of fatty acid unsaturation, decreases protein oxidative damage and increases ERK signaling in the heart of C57BL/6 mice. Rejuv Res 13:683–693

    Article  CAS  Google Scholar 

  • Sanchez-Roman I, Gomez A, Gomez J, Suarez H, Sanchez C, Naudi A, Ayala V, Portero-Otin M, Lopez-Torres M, Pamplona R, Barja G (2011) Forty percent methionine restriction lowers DNA methylation, complex I ROS generation, and oxidative damage to mtDNA and mitochondrial proteins in rat heart. J Bioenerg Biomembr 43:699–708

    Article  CAS  Google Scholar 

  • Sanz A, Barja G (2006) Estimation of the rate of production of oxygen radicals by mitochondria. In: Conn M (ed) Handbook of models for human aging. Academic Press, New York, pp 183–189

    Chapter  Google Scholar 

  • Someya S, Yu W, Hallows WC, Xu J, Vann JM, Leeuwenburgh C, Tanokura M, Denu JM, Prolla TA (2010) Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction. Cell 143:802–812

    Article  CAS  Google Scholar 

  • Sun L, Amir A, Akha S, Millar RA, Harper J (2009) Life-span extension in mice by preweaning food restriction and by methionine restriction in middle age. J Gerontol 64A:711–722

    Article  CAS  Google Scholar 

  • Tsai CW, Lin AH, Wang TS, Liu KL, Chen HW, Lii CK (2010) Methionine restriction up-regulates the expression of the pi class of glutathione S-transferase partially via the extracellular signal-regulated kinase activator protein-1 signaling pathway initiated by glutathione depletion. Mol Nutr Food Res 54:841–850

    Article  CAS  Google Scholar 

  • Verdin E, Hirschey MD, Finley LWS, Haigis MC (2010) Sirtuin regulation of mitochondria: energy production, apoptosis, and signalling. Trends Biochem Sci 35:669–675

    Article  CAS  Google Scholar 

  • Yan L, Vatner DE, O’Connor JP, Ivessa A, Ge H, Chen W, Hirotani S, Ishikawa Y, Sadoshima J, Vatner SF (2007) Type 5 adenylyl cyclase disruption increases longevity and protects against stress. Cell 130:247–258

    Article  CAS  Google Scholar 

  • Yang SY, Hoy M, Fuller B, Sales KM, Seifalian AM, Winslet MC (2010) Pretreatment with insulin-like growth factor I protects skeletal muscle cells against oxidative damage via PI3K/Akt and ERK1/2 MAPK pathways. Lab Invest 90:391–401

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo Barja.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sanchez-Roman, I., Gomez, A., Naudí, A. et al. Independent and additive effects of atenolol and methionine restriction on lowering rat heart mitochondria oxidative stress. J Bioenerg Biomembr 46, 159–172 (2014). https://doi.org/10.1007/s10863-013-9535-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-013-9535-7

Keywords

Navigation