Skip to main content
Log in

Comparative analysis of some aspects of mitochondrial metabolism in differentiated and undifferentiated neuroblastoma cells

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

The aim of the present study is to clarify some aspects of the mechanisms of regulation of mitochondrial metabolism in neuroblastoma (NB) cells. Experiments were performed on murine Neuro-2a (N2a) cell line, and the same cells differentiated by all-trans-retinoic acid (dN2a) served as in vitro model of normal neurons. Oxygraphy and Metabolic Control Analysis (MCA) were applied to characterize the function of mitochondrial oxidative phosphorylation (OXPHOS) in NB cells. Flux control coefficients (FCCs) for components of the OXPHOS system were determined using titration studies with specific non-competitive inhibitors in the presence of exogenously added ADP. Respiration rates of undifferentiated Neuro-2a cells (uN2a) and the FCC of Complex-II in these cells were found to be considerably lower than those in dN2a cells. Our results show that NB is not an exclusively glycolytic tumor and could produce a considerable part of ATP via OXPHOS. Two important enzymes - hexokinase-2 and adenylate kinase-2 can play a role in the generation of ATP in NB cells. MCA has shown that in uN2a cells the key sites in the regulation of OXPHOS are complexes I, II and IV, whereas in dN2a cells complexes II and IV. Results obtained for the phosphate and adenine nucleotide carriers showed that in dN2a cells these carriers exerted lower control over the OXPHOS than in undifferentiated cells. The sum of FCCs for both types of NB cells was found to exceed significantly that for normal cells suggesting that in these cells the respiratory chain was somehow reorganized or assembled into large supercomplexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Almeida A, Bolaños JP, Moncada S (2010) E3 ubiquitin ligase APC/C-Cdh1 accounts for the Warburg effect by linking glycolysis to cell proliferation. Proc Natl Acad Sci 107(2):738–741. doi:10.1073/pnas.0913668107

    Article  CAS  Google Scholar 

  • Ames A (2000) CNS energy metabolism as related to function. Brain Res Rev 34(1–2):42–68. doi:10.1016/S0165-0173(00)00038-2

    Article  CAS  Google Scholar 

  • Anmann T, Guzun R, Beraud N, Pelloux S, Kuznetsov AV, Kogerman L et al (2006) Different kinetics of the regulation of respiration in permeabilized cardiomyocytes and in HL-1 cardiac cells. Importance of cell structure/organization for respiration regulation. Biochim Biophys Acta 1757(12):1597–1606. doi:10.1016/j.bbabio.2006.09.008

    Article  CAS  Google Scholar 

  • Apte SP, Sarangarajan R (2008) Cellular respiration and carcinogenesis. Springer, New York

    Google Scholar 

  • Astuti D, Hart-Holden N, Latif F, Lalloo F, Black GC, Lim C et al (2003) Genetic analysis of mitochondrial complex II subunits SDHD, SDHB and SDHC in paraganglioma and phaeochromocytoma susceptibility. Clinical Endocrinology 59(6):728–733. doi:10.1046/j.1365-2265.2003.01914.x

    Article  CAS  Google Scholar 

  • Astuti D, Morris M, Krona C, Abel F, Gentle D, Martinsson T et al (2004) Investigation of the role of SDHB inactivation in sporadic phaeochromocytoma and neuroblastoma. Br J Cancer 91(10):1835–1841

    Article  CAS  Google Scholar 

  • Atsumi T, Chesney J, Metz C, Leng L, Donnelly S, Makita Z et al (2002) High expression of inducible 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (iPFK-2; PFKFB3) in human cancers. Cancer Res 62(20):5881–5887

    CAS  Google Scholar 

  • Bardella C, Pollard PJ, Tomlinson I (2011) SDH mutations in cancer. Biochim Biophys Acta (BBA) Bioenerg 1807(11):1432–1443. doi:10.1016/j.bbabio.2011.07.003

    Article  CAS  Google Scholar 

  • Beemer FA, Vlug AM, Rousseau-Merck MF, van Veelen CW, Rijksen G, Staal GE (1984) Glycolytic enzymes from human neuroectodermal tumors of childhood. Eur J Cancer Clin Oncol 20(2):253–259

    Article  CAS  Google Scholar 

  • Biswas S, Ray M, Misra S, Dutta DP, Ray S (1997) Selective inhibition of mitochondrial respiration and glycolysis in human leukaemic leucocytes by methylglyoxal. Biochem J 323(Pt 2):343–348

    CAS  Google Scholar 

  • Blanco V, Lopez Camelo J, Carri NG (2001) Growth inhibition, morphological differentiation and stimulation of survival in neuronal cell type (Neuro-2a) treated with trophic molecules. Cell Biol Int 25(9):909–917

    Article  CAS  Google Scholar 

  • Bonora E, Porcelli AM, Gasparre G, Biondi A, Ghelli A, Carelli V et al (2006) Defective oxidative phosphorylation in thyroid oncocytic carcinoma is associated with pathogenic mitochondrial DNA mutations affecting complexes I and III. Cancer Res 66(12):6087–6096. doi:10.1158/0008-5472.CAN-06-0171

    Article  CAS  Google Scholar 

  • Bustamante E, Pedersen PL (1977) High aerobic glycolysis of rat hepatoma cells in culture: Role of mitochondrial hexokinase. Proc Natl Acad Sci 74(9):3735–3739

    Article  CAS  Google Scholar 

  • Bustamante E, Pedersen PL (1980) Mitochondrial hexokinase of rat hepatoma cells in culture: solubilization and kinetic properties. Biochemistry 19(22):4972–4977

    Article  CAS  Google Scholar 

  • Cascon A, Landa I, Lopez-Jimenez E, Diez-Hernandez A, Buchta M, Montero-Conde C et al (2008) Molecular characterisation of a common SDHB deletion in paraganglioma patients. J Med Genet 45(4):233–238. doi:10.1136/jmg.2007.054965

    Article  CAS  Google Scholar 

  • Chen Z, Zhang H, Lu W, Huang P (2009) Role of mitochondria-associated hexokinase II in cancer cell death induced by 3-bromopyruvate. Biochim Biophys Acta (BBA) Bioenerg 1787(5):553–560. doi:10.1016/j.bbabio.2009.03.003

    Article  CAS  Google Scholar 

  • Chevrollier A, Loiseau D, Chabi B, Renier G, Douay O, Malthiery Y et al (2005) ANT2 isoform required for cancer cell glycolysis. J Bioenerg Biomembr 37(5):307–316. doi:10.1007/s10863-005-8642-5

    Article  CAS  Google Scholar 

  • Chevrollier A, Loiseau D, Reynier P, Stepien G (2011) Adenine nucleotide translocase 2 is a key mitochondrial protein in cancer metabolism. Biochim Biophys Acta (BBA) Bioenerg 1807(6):562–567. doi:10.1016/j.bbabio.2010.10.008

    Article  CAS  Google Scholar 

  • Chuang J-H, Chou M-H, Tai M-H, Lin T-K, Liou C-W, Chen T et al (2013) 2-Deoxyglucose treatment complements the cisplatin- or BH3-only mimetic-induced suppression of neuroblastoma cell growth. Int J Biochem Cell Biol 45(5):944–951. doi:10.1016/j.biocel.2013.01.019

    Article  CAS  Google Scholar 

  • de Bruin W, Oerlemans F, Wieringa B (2004) Adenylate kinase I does not affect cellular growth characteristics under normal and metabolic stress conditions. Experimental Cell Research 297(1):97–107. doi:10.1016/j.yexcr.2004.02.025

    Article  Google Scholar 

  • Deubzer B, Mayer F, Kuci Z, Niewisch M, Merkel G, Handgretinger R et al (2010) H(2)O(2)-mediated cytotoxicity of pharmacologic ascorbate concentrations to neuroblastoma cells: potential role of lactate and ferritin. Cell Physiol Biochem 25(6):767–774. doi:10.1159/000315098

    Article  CAS  Google Scholar 

  • Dolce V, Scarcia P, Iacopetta D, Palmieri F (2005) A fourth ADP/ATP carrier isoform in man: identification, bacterial expression, functional characterization and tissue distribution. FEBS Lett 579(3):633–637. doi:10.1016/j.febslet.2004.12.034

    Article  CAS  Google Scholar 

  • Dzeja PP, Terzic A (2003) Phosphotransfer networks and cellular energetics. J Exp Biol 206(Pt 12):2039–2047

    Article  CAS  Google Scholar 

  • Dzeja P, Terzic A (2009) Adenylate kinase and AMP signaling networks: Metabolic monitoring, signal communication and body energy sensing. Int J Mol Sci 10(4):1729–1772. doi:10.3390/ijms10041729

    Article  CAS  Google Scholar 

  • Dzeja PP, Vitkevicius KT, Redfield MM, Burnett JC, Terzic A (1999) Adenylate kinase-catalyzed phosphotransfer in the myocardium : increased contribution in heart failure. Circ Res 84(10):1137–1143

    Article  CAS  Google Scholar 

  • Ellman GL, Courtney KD, Andres V Jr, Feather-Stone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  CAS  Google Scholar 

  • Feichtinger R, Zimmermann F, Mayr J, Neureiter D, Hauser-Kronberger C, Schilling F et al (2010) Low aerobic mitochondrial energy metabolism in poorly- or undifferentiated neuroblastoma. BMC Cancer 10(1):149

    Article  Google Scholar 

  • Fell D (1997) Understanding the control of metabolism. Portland Press, London

    Google Scholar 

  • Fell D (2005) Metabolic Control Analysis. In (pp. 69–80).

  • Gatenby RA, Gillies RJ (2004) Why do cancers have high aerobic glycolysis? Nat Rev Cancer 4(11):891–899. doi:10.1038/nrc1478

    Article  CAS  Google Scholar 

  • Geschwind JF, Georgiades CS, Ko YH, Pedersen PL (2004) Recently elucidated energy catabolism pathways provide opportunities for novel treatments in hepatocellular carcinoma. Expert Rev Anticancer Ther 4(3):449–457. doi:10.1586/14737140.4.3.449

    Article  CAS  Google Scholar 

  • Gogvadze V, Orrenius S, Zhivotovsky B (2009) Mitochondria as targets for cancer chemotherapy. Seminars in Cancer Biology 19(1):57–66. doi:10.1016/j.semcancer.2008.11.007

    Article  CAS  Google Scholar 

  • Groen AK, Wanders RJ, Westerhoff HV, van der Meer R, Tager JM (1982) Quantification of the contribution of various steps to the control of mitochondrial respiration. J Biol Chem 257(6):2754–2757

    CAS  Google Scholar 

  • Guzun R, Timohhina N, Tepp K, Monge C, Kaambre T, Sikk P et al (2009) Regulation of respiration controlled by mitochondrial creatine kinase in permeabilized cardiac cells in situ. Importance of system level properties. Biochim Biophys Acta 1787(9):1089–1105. doi:10.1016/j.bbabio.2009.03.024

    Article  CAS  Google Scholar 

  • Guzun R, Karu-Varikmaa M, Gonzalez-Granillo M, Kuznetsov AV, Michel L, Cottet-Rousselle C et al (2011) Mitochondria-cytoskeleton interaction: Distribution of beta-tubulins in cardiomyocytes and HL-1 cells. Biochim Biophys Acta 1807(4):458–469. doi:10.1016/j.bbabio.2011.01.010

    Article  CAS  Google Scholar 

  • Hamburg RJ, Friedman DL, Olson EN, Ma TS, Cortez MD, Goodman C et al (1990) Muscle creatine kinase isoenzyme expression in adult human brain. J Biol Chem 265(11):6403–6409

    CAS  Google Scholar 

  • Hoefs SJG, Rodenburg RJ, Smeitink JAM, van den Heuvel LP (2012) Molecular base of biochemical complex I deficiency. Mitochondrion 12(5):520–532. doi:10.1016/j.mito.2012.07.106

    Article  CAS  Google Scholar 

  • Huang LS, Sun G, Cobessi D, Wang AC, Shen JT, Tung EY et al (2006) 3-nitropropionic acid is a suicide inhibitor of mitochondrial respiration that, upon oxidation by complex II, forms a covalent adduct with a catalytic base arginine in the active site of the enzyme. J Biol Chem 281(9):5965–5972. doi:10.1074/jbc.M511270200

    Article  CAS  Google Scholar 

  • Ihrlund LS, Hernlund E, Khan O, Shoshan MC (2008) 3-Bromopyruvate as inhibitor of tumour cell energy metabolism and chemopotentiator of platinum drugs. Mol Oncol 2(1):94–101

    Article  Google Scholar 

  • Ishiguro Y, Kato K, Akatsuka H, Ito T (1990) The diagnostic and prognostic value of pretreatment serum creatine kinase BB levels in patients with neuroblastoma. Cancer 65(9):2014–2019

    Article  CAS  Google Scholar 

  • Kaambre T, Chekulayev V, Shevchuk I, Karu-Varikmaa M, Timohhina N, Tepp K et al (2012a) Metabolic control analysis of cellular respiration in situ in intraoperational samples of human breast cancer. J Bioenerg Biomembr 44(5):539–558. doi:10.1007/s10863-012-9457-9

    Article  CAS  Google Scholar 

  • Kaambre T, Chekulayev V, Shevchuk I, Karu-Varikmaa M, Timohhina N, Tepp K et al (2012b) Metabolic control analysis of cellular respiration in situ in intraoperational samples of human breast cancer. J Bioenerg Biomembr. doi:10.1007/s10863-012-9457-9

    Google Scholar 

  • Kholodenko BN, Westerhoff HV (1993) Metabolic channelling and control of the flux. FEBS Lett 320(1):71–74

    Article  CAS  Google Scholar 

  • Krieger-Hinck N, Gustke H, Valentiner U, Mikecz P, Buchert R, Mester J et al (2006) Visualisation of neuroblastoma growth in a Scid mouse model using [18F]FDG and [18F]FLT-PET. Anticancer Res 26(5A):3467–3472

    Google Scholar 

  • Krieglstein J, Mwasekaga S (1987) Effect of methohexital on the relationship between hexokinase distribution and energy metabolism in neuroblastoma cells. Arzneimittelforschung 37(3):291–295

    CAS  Google Scholar 

  • Krieglstein J, Schachtschabel DO, Wever K, Wickop G (1981) Influence of thiopental on intracellular distribution of hexokinase activity in various tumor cells. Arzneimittelforschung 31(1):121–123

    CAS  Google Scholar 

  • Kuznetsov AV, Veksler V, Gellerich FN, Saks V, Margreiter R, Kunz WS (2008) Analysis of mitochondrial function in situ in permeabilized muscle fibers, tissues and cells. Nat Protoc 3(6):965–976. doi:10.1038/nprot.2008.61

    Article  CAS  Google Scholar 

  • Le Bras M, Borgne-Sanchez A, Touat Z, El Dein OS, Deniaud A, Maillier E et al (2006) Chemosensitization by knockdown of adenine nucleotide translocase-2. Cancer Res 66(18):9143–9152. doi:10.1158/0008-5472.CAN-05-4407

    Article  Google Scholar 

  • Lenaz G, Genova ML (2009) Structural and functional organization of the mitochondrial respiratory chain: a dynamic super-assembly. Int J Biochem Cell Biol 41(10):1750–1772

    Article  CAS  Google Scholar 

  • Lenaz G, Genova ML (2010) Structure and organization of mitochondrial respiratory complexes: a new understanding of an old subject. Antioxid Redox Signal 12(8):961–1008. doi:10.1089/ars.2009.2704

    Article  CAS  Google Scholar 

  • Levy A, Zage P, Akers L, Ghisoli M, Chen Z, Fang W et al (2012) The combination of the novel glycolysis inhibitor 3-BrOP and rapamycin is effective against neuroblastoma. Investigational New Drugs 30(1):191–199. doi:10.1007/s10637-010-9551-y

    Article  CAS  Google Scholar 

  • Lienhard GE, Secemski II (1973) P 1, P 5 -Di(adenosine-5′)pentaphosphate, a potent multisubstrate inhibitor of adenylate kinase. J Biol Chem 248(3):1121–1123

    CAS  Google Scholar 

  • Majewski N, Nogueira V, Bhaskar P, Coy PE, Skeen JE, Gottlob K et al (2004) Hexokinase-mitochondria interaction mediated by Akt is required to inhibit apoptosis in the presence or absence of Bax and Bak. Mol Cell 16(5):819–830. doi:10.1016/j.molcel.2004.11.014

    Article  CAS  Google Scholar 

  • Marin-Hernandez A, Rodriguez-Enriquez S, Vital-Gonzalez PA, Flores-Rodriguez FL, Macias-Silva M, Sosa-Garrocho M et al (2006) Determining and understanding the control of glycolysis in fast-growth tumor cells. Flux control by an over-expressed but strongly product-inhibited hexokinase. FEBS J 273(9):1975–1988. doi:10.1111/j.1742-4658.2006.05214.x

    Article  CAS  Google Scholar 

  • Mathupala SP, Ko YH, Pedersen PL (2006) Hexokinase II: cancer's double-edged sword acting as both facilitator and gatekeeper of malignancy when bound to mitochondria. Oncogene 25(34):4777–4786. doi:10.1038/sj.onc.1209603

    Article  CAS  Google Scholar 

  • Matsushita K, Uchida K, Saigusa S, Ide S, Hashimoto K, Koike Y et al (2012) Glycolysis inhibitors as a potential therapeutic option to treat aggressive neuroblastoma expressing GLUT1. Journal of Pediatric Surgery 47(7):1323–1330. doi:10.1016/j.jpedsurg.2011.12.007

    Article  Google Scholar 

  • Monge C, Beraud N, Kuznetsov A, Rostovtseva T, Sackett D, Schlattner U et al (2008) Regulation of respiration in brain mitochondria and synaptosomes: restrictions of ADP diffusion in situ, roles of tubulin, and mitochondrial creatine kinase. Mol Cell Biochem 318(1–2):147–165. doi:10.1007/s11010-008-9865-7

    Article  CAS  Google Scholar 

  • Monge C, Beraud N, Tepp K, Pelloux S, Chahboun S, Kaambre T et al (2009) Comparative analysis of the bioenergetics of adult cardiomyocytes and nonbeating HL-1 cells: respiratory chain activities, glycolytic enzyme profiles, and metabolic fluxes. Can J Physiol Pharmacol 87(4):318–326. doi:10.1139/y09-018

    Article  CAS  Google Scholar 

  • Moreno-Sanchez R, Rodriguez-Enriquez S, Marin-Hernandez A, Saavedra E (2007) Energy metabolism in tumor cells. FEBS J 274(6):1393–1418. doi:10.1111/j.1742-4658.2007.05686.x

    Article  CAS  Google Scholar 

  • Moreno-Sanchez R, Saavedra E, Rodriguez-Enriquez S, Olin-Sandoval V (2008) Metabolic control analysis: a tool for designing strategies to manipulate metabolic pathways. J Biomed Biotechnol 2008:597913. doi:10.1155/2008/597913

    Article  Google Scholar 

  • Moreno-Sánchez R, Rodríguez-Enríquez S, Saavedra E, Marín-Hernández A, Gallardo-Pérez JC (2009) The bioenergetics of cancer: Is glycolysis the main ATP supplier in all tumor cells? BioFactors 35(2):209–225. doi:10.1002/biof.31

    Article  Google Scholar 

  • Moreno-Sanchez R, Saavedra E, Rodriguez-Enriquez S, Gallardo-Perez JC, Quezada H, Westerhoff HV (2010) Metabolic control analysis indicates a change of strategy in the treatment of cancer. Mitochondrion 10(6):626–639. doi:10.1016/j.mito.2010.06.002

    Article  CAS  Google Scholar 

  • Nakashima RA, Paggi MG, Scott LJ, Pedersen PL (1988) Purification and characterization of a bindable form of mitochondrial bound hexokinase from the highly glycolytic AS-30D rat hepatoma cell line. Cancer Res 48(4):913–919

    CAS  Google Scholar 

  • Neary JT, Rathbone MP, Cattabeni F, Abbracchio MP, Burnstock G (1996) Trophic actions of extracellular nucleotides and nucleosides on glial and neuronal cells. Trends Neurosci 19(1):13–18

    Article  CAS  Google Scholar 

  • Patra S, Bera S, SinhaRoy S, Ghoshal S, Ray S, Basu A et al (2008) Progressive decrease of phosphocreatine, creatine and creatine kinase in skeletal muscle upon transformation to sarcoma. FEBS J 275(12):3236–3247. doi:10.1111/j.1742-4658.2008.06475.x

    Article  CAS  Google Scholar 

  • Patra S, Ghosh A, Roy SS, Bera S, Das M, Talukdar D et al (2012) A short review on creatine-creatine kinase system in relation to cancer and some experimental results on creatine as adjuvant in cancer therapy. Amino Acids 42(6):2319–2330. doi:10.1007/s00726-011-0974-3

    Article  CAS  Google Scholar 

  • Pedersen PL (1978) Tumor mitochondria and the bioenergetics of cancer cells. Prog Exp Tumor Res 22:190–274

    CAS  Google Scholar 

  • Pedersen PL (2007a) The cancer cell's "power plants" as promising therapeutic targets: an overview. J Bioenerg Biomembr 39(1):1–12. doi:10.1007/s10863-007-9070-5

    Article  CAS  Google Scholar 

  • Pedersen PL (2007b) Warburg, me and Hexokinase 2: Multiple discoveries of key molecular events underlying one of cancers' most common phenotypes, the "Warburg Effect", i.e., elevated glycolysis in the presence of oxygen. J Bioenerg Biomembr 39(3):211–222. doi:10.1007/s10863-007-9094-x

    Article  CAS  Google Scholar 

  • Pedersen PL (2008) Voltage dependent anion channels (VDACs): a brief introduction with a focus on the outer mitochondrial compartment's roles together with hexokinase-2 in the "Warburg effect" in cancer. J Bioenerg Biomembr 40(3):123–126. doi:10.1007/s10863-008-9165-7

    Article  CAS  Google Scholar 

  • Pedersen PL (2012) 3-bromopyruvate (3BP) a fast acting, promising, powerful, specific, and effective "small molecule" anti-cancer agent taken from labside to bedside: introduction to a special issue. J Bioenerg Biomembr 44(1):1–6. doi:10.1007/s10863-012-9425-4

    Article  CAS  Google Scholar 

  • Pedersen PL, Mathupala S, Rempel A, Geschwind JF, Ko YH (2002) Mitochondrial bound type II hexokinase: a key player in the growth and survival of many cancers and an ideal prospect for therapeutic intervention. Biochim Biophys Acta (BBA) Bioenerg 1555(1–3):14–20. doi:10.1016/S0005-2728(02)00248-7

    Article  CAS  Google Scholar 

  • Puurand M, Peet N, Piirsoo A, Peetsalu M, Soplepmann J, Sirotkina M et al (2012) Deficiency of the complex I of the mitochondrial respiratory chain but improved adenylate control over succinate-dependent respiration are human gastric cancer-specific phenomena. Mol Cell Biochem 370(1–2):69–78. doi:10.1007/s11010-012-1399-3

    Article  CAS  Google Scholar 

  • Rostovtseva TK, Sheldon KL, Hassanzadeh E, Monge C, Saks V, Bezrukov SM et al (2008) Tubulin binding blocks mitochondrial voltage-dependent anion channel and regulates respiration. Proc Natl Acad Sci USA 105(48):18746–18751. doi:10.1073/pnas.0806303105

    Article  CAS  Google Scholar 

  • Saks VA, Belikova YO, Kuznetsov AV (1991) In vivo regulation of mitochondrial respiration in cardiomyocytes: specific restrictions for intracellular diffusion of ADP. Biochim Biophys Acta 1074(2):302–311

    Article  CAS  Google Scholar 

  • Saks VA, Veksler VI, Kuznetsov AV, Kay L, Sikk P, Tiivel T et al (1998) Permeabilized cell and skinned fiber techniques in studies of mitochondrial function in vivo. Mol Cell Biochem 184(1–2):81–100

    Article  CAS  Google Scholar 

  • Saks V, Kuznetsov A, Andrienko T, Usson Y, Appaix F, Guerrero K et al (2003) Heterogeneity of ADP diffusion and regulation of respiration in cardiac cells. Biophys J 84(5):3436–3456. doi:10.1016/S0006-3495(03)70065-4

    Article  CAS  Google Scholar 

  • Sato C, Matsuda T, Kitajima K (2002) Neuronal Differentiation-dependent Expression of the Disialic Acid Epitope on CD166 and Its Involvement in Neurite Formation in Neuro2A Cells. J Biol Chem 277(47):45299–45305. doi:10.1074/jbc.M206046200

    Article  CAS  Google Scholar 

  • Schimke RN, Collins DL, Stolle CA (2010) Paraganglioma, neuroblastoma, and a SDHB mutation: Resolution of a 30-year-old mystery. Am J Med Genet A 152A(6):1531–1535. doi:10.1002/ajmg.a.33384

    Google Scholar 

  • Seppet EK, Kaambre T, Sikk P, Tiivel T, Vija H, Tonkonogi M et al (2001) Functional complexes of mitochondria with Ca, MgATPases of myofibrils and sarcoplasmic reticulum in muscle cells. Biochim Biophys Acta 1504(2–3):379–395

    Article  CAS  Google Scholar 

  • Seppet EK, Eimre M, Anmann T, Seppet E, Piirsoo A, Peet N et al (2006) Structure-function relationships in the regulation of energy transfer between mitochondria and ATPases in cardiac cells. Exp Clin Cardiol 11(3):189–194

    CAS  Google Scholar 

  • Sharma LK, Fang H, Liu J, Vartak R, Deng J, Bai Y (2011) Mitochondrial respiratory complex I dysfunction promotes tumorigenesis through ROS alteration and AKT activation. Hum Mol Genet 20(23):4605–4616. doi:10.1093/hmg/ddr395

    Article  CAS  Google Scholar 

  • Simonnet H, Demont J, Pfeiffer K, Guenaneche L, Bouvier R, Brandt U et al (2003) Mitochondrial complex I is deficient in renal oncocytomas. Carcinogenesis 24(9):1461–1466. doi:10.1093/carcin/bgg109

    Article  CAS  Google Scholar 

  • Stepien G, Torroni A, Chung AB, Hodge JA, Wallace DC (1992) Differential expression of adenine nucleotide translocator isoforms in mammalian tissues and during muscle cell differentiation. J Biol Chem 267(21):14592–14597

    CAS  Google Scholar 

  • Tepp K, Timohhina N, Chekulayev V, Shevchuk I, Kaambre T, Saks V (2010) Metabolic control analysis of integrated energy metabolism in permeabilized cardiomyocytes - experimental study. Acta Biochim Pol 57(4):421–430

    CAS  Google Scholar 

  • Tepp K, Shevchuk I, Chekulayev V, Timohhina N, Kuznetsov AV, Guzun R et al (2011) High efficiency of energy flux controls within mitochondrial interactosome in cardiac intracellular energetic units. Biochim Biophys Acta Bioenerg 1807(12):1549–1561. doi:10.1016/j.bbabio.2011.08.005

    Article  CAS  Google Scholar 

  • Tsung SH (1976) Creatine kinase isoenzyme patterns in human tissue obtained at surgery. Clin Chem 22(2):173–175

    CAS  Google Scholar 

  • Warburg O (1956) On respiratory impairment in cancer cells. Science 124(3215):269–270

    CAS  Google Scholar 

  • Whitaker-Menezes D, Martinez-Outschoorn UE, Lin Z, Ertel A, Flomenberg N, Witkiewicz AK et al (2011) Evidence for a stromal-epithelial "lactate shuttle" in human tumors: MCT4 is a marker of oxidative stress in cancer-associated fibroblasts. Cell Cycle 10(11):1772–1783

    Article  CAS  Google Scholar 

  • Xu R-h, Pelicano H, Zhou Y, Carew JS, Feng L, Bhalla KN et al (2005) Inhibition of Glycolysis in Cancer Cells: A Novel Strategy to Overcome Drug Resistance Associated with Mitochondrial Respiratory Defect and Hypoxia. Cancer Res 65(2):613–621

    CAS  Google Scholar 

  • Xun Z, Lee DY, Lim J, Canaria CA, Barnebey A, Yanonne SM et al (2012) Retinoic acid-induced differentiation increases the rate of oxygen consumption and enhances the spare respiratory capacity of mitochondria in SH-SY5Y cells. Mech Ageing Dev 133(4):176–185. doi:10.1016/j.mad.2012.01.008

    Article  CAS  Google Scholar 

  • Zamora M, Granell M, Mampel T, Vinas O (2004) Adenine nucleotide translocase 3 (ANT3) overexpression induces apoptosis in cultured cells. FEBS Lett 563(1–3):155–160. doi:10.1016/S0014-5793(04)00293-5

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tuuli Kaambre.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klepinin, A., Chekulayev, V., Timohhina, N. et al. Comparative analysis of some aspects of mitochondrial metabolism in differentiated and undifferentiated neuroblastoma cells. J Bioenerg Biomembr 46, 17–31 (2014). https://doi.org/10.1007/s10863-013-9529-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-013-9529-5

Keywords

Navigation