Skip to main content
Log in

Dynamic buffering of mitochondrial Ca2+ during Ca2+ uptake and Na+-induced Ca2+ release

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

In cardiac mitochondria, matrix free Ca2+ ([Ca2+]m) is primarily regulated by Ca2+ uptake and release via the Ca2+ uniporter (CU) and Na+/Ca2+ exchanger (NCE) as well as by Ca2+ buffering. Although experimental and computational studies on the CU and NCE dynamics exist, it is not well understood how matrix Ca2+ buffering affects these dynamics under various Ca2+ uptake and release conditions, and whether this influences the stoichiometry of the NCE. To elucidate the role of matrix Ca2+ buffering on the uptake and release of Ca2+, we monitored Ca2+ dynamics in isolated mitochondria by measuring both the extra-matrix free [Ca2+] ([Ca2+]e) and [Ca2+]m. A detailed protocol was developed and freshly isolated mitochondria from guinea pig hearts were exposed to five different [CaCl2] followed by ruthenium red and six different [NaCl]. By using the fluorescent probe indo-1, [Ca2+]e and [Ca2+]m were spectrofluorometrically quantified, and the stoichiometry of the NCE was determined. In addition, we measured NADH, membrane potential, matrix volume and matrix pH to monitor Ca2+-induced changes in mitochondrial bioenergetics. Our [Ca2+]e and [Ca2+]m measurements demonstrate that Ca2+ uptake and release do not show reciprocal Ca2+ dynamics in the extra-matrix and matrix compartments. This salient finding is likely caused by a dynamic Ca2+ buffering system in the matrix compartment. The Na+- induced Ca2+ release demonstrates an electrogenic exchange via the NCE by excluding an electroneutral exchange. Mitochondrial bioenergetics were only transiently affected by Ca2+ uptake in the presence of large amounts of CaCl2, but not by Na+- induced Ca2+ release.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Affolter H, Carafoli E (1980) The Ca2+-Na+ antiporter of heart mitochondria operates electroneutrally. Biochem Biophys Res Commun 95(1):193–196

    Article  CAS  Google Scholar 

  • Agarwal B, Camara AK, Stowe DF, Bosnjak ZJ, Dash RK (2012) Enhanced charge-independent mitochondrial free Ca2+ and attenuated ADP-induced NADH oxidation by isoflurane: Implications for cardioprotection. Biochim Biophys Acta 1817(3):453–465

    Article  CAS  Google Scholar 

  • Aldakkak M, Stowe DF, Cheng Q, Kwok WM, Camara AK (2010) Mitochondrial matrix K+ flux independent of large-conductance Ca2+-activated K+ channel opening. Am J Physiol Cell Physiol 298(3):C530–C541

    Article  CAS  Google Scholar 

  • Baughman JM, Perocchi F, Girgis HS, Plovanich M, Belcher-Timme CA, Sancak Y et al (2011) Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter. Nature 476(7360):341–345

    Article  CAS  Google Scholar 

  • Baysal K, Jung DW, Gunter KK, Gunter TE, Brierley GP (1994) Na+-dependent Ca2+ efflux mechanism of heart mitochondria is not a passive Ca2+/2Na+ exchanger. Am J Physiol 266(3 Pt 1):C800–C808

    CAS  Google Scholar 

  • Bazil JN, Blomeyer CA, Pradhan RK, Camara AK, & Dash RK (2012) Modeling the calcium sequestration system in isolated guinea pig cardiac mitochondria. J Bioenerg Biomembr, accepted for publication

  • Bernardi P, Rasola A (2007) Calcium and cell death: the mitochondrial connection. Subcell Biochem 45:481–506

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Brand MD (1985) The stoichiometry of the exchange catalysed by the mitochondrial calcium/sodium antiporter. Biochem J 229(1):161–166

    CAS  Google Scholar 

  • Brookes PS, Yoon Y, Robotham JL, Anders MW, Sheu SS (2004) Calcium, ATP, and ROS: a mitochondrial love-hate triangle. Am J Physiol Cell Physiol 287(4):C817–C833

    Article  CAS  Google Scholar 

  • Camara AK, Lesnefsky EJ, Stowe DF (2010) Potential therapeutic benefits of strategies directed to mitochondria. Antioxid Redox Signal 13(3):279–347

    Article  CAS  Google Scholar 

  • Camara AK, Bienengraeber M, Stowe DF (2011) Mitochondrial approaches to protect against cardiac ischemia and reperfusion injury. Front Physiol 2:13

    Article  Google Scholar 

  • Chalmers S, Nicholls DG (2003) The relationship between free and total calcium concentrations in the matrix of liver and brain mitochondria. J Biol Chem 278(21):19062–19070

    Article  CAS  Google Scholar 

  • Chinopoulos C, Adam-Vizi V (2010) Mitochondrial Ca2+ sequestration and precipitation revisited. FEBS J 277(18):3637–3651

    Article  CAS  Google Scholar 

  • Cox DA, Matlib MA (1993) A role for the mitochondrial Na+-Ca2+ exchanger in the regulation of oxidative phosphorylation in isolated heart mitochondria. J Biol Chem 268(2):938–947

    CAS  Google Scholar 

  • Crompton M, Heid I (1978) The cycling of calcium, sodium, and protons across the inner membrane of cardiac mitochondria. Eur J Biochem 91(2):599–608

    Article  CAS  Google Scholar 

  • Crompton M, Capano M, Carafoli E (1976) The sodium-induced efflux of calcium from heart mitochondria. Eur J Biochem 69(2):453–462

    Article  CAS  Google Scholar 

  • Dash RK, Beard DA (2008) Analysis of cardiac mitochondrial Na+-Ca2+ exchanger kinetics with a biophysical model of mitochondrial Ca2+ handling suggests a 3:1 stoichiometry. J Physiol 586(13):3267–3285

    Article  CAS  Google Scholar 

  • Dash RK, Qi F, Beard DA (2009) A biophysically based mathematical model for the kinetics of mitochondrial calcium uniporter. Biophys J 96(4):1318–1332

    Article  CAS  Google Scholar 

  • De Stefani D, Raffaello A, Teardo E, Szabo I, Rizzuto R (2011) A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter. Nature 476(7360):336–340

    Article  Google Scholar 

  • Dedkova EN, Blatter LA (2008) Mitochondrial Ca2+ and the heart. Cell Calcium 44(1):77–91

    Article  CAS  Google Scholar 

  • Denton RM (2009) Regulation of mitochondrial dehydrogenases by calcium ions. Biochim Biophys Acta 1787(11):1309–1316

    Article  CAS  Google Scholar 

  • Genge BR, Wu LN, Wuthier RE (2007) In vitro modeling of matrix vesicle nucleation: synergistic stimulation of mineral formation by annexin A5 and phosphatidylserine. J Biol Chem 282(36):26035–26045

    Article  CAS  Google Scholar 

  • Graier WF, Frieden M, Malli R (2007) Mitochondria and Ca2+ signaling: old guests, new functions. Pflugers Arch 455(3):375–396

    Article  CAS  Google Scholar 

  • Griffiths EJ (2009) Mitochondrial calcium transport in the heart: physiological and pathological roles. J Mol Cell Cardiol 46(6):789–803

    Article  CAS  Google Scholar 

  • Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260(6):3440–3450

    CAS  Google Scholar 

  • Gunter TE, Pfeiffer DR (1990) Mechanisms by which mitochondria transport calcium. Am J Physiol 258(5 Pt 1):C755–C786

    CAS  Google Scholar 

  • Gunter TE, Sheu SS (2009) Characteristics and possible functions of mitochondrial Ca2+ transport mechanisms. Biochim Biophys Acta 1787(11):1291–1308

    Article  CAS  Google Scholar 

  • Halestrap AP (2009) Mitochondria and reperfusion injury of the heart - a holey death but not beyond salvation. J Bioenerg Biomembr 41(2):113–121

    Article  CAS  Google Scholar 

  • Haumann J, Dash RK, Stowe DF, Boelens AD, Beard DA, Camara AK (2010) Mitochondrial free [Ca2+] increases during ATP/ADP antiport and ADP phosphorylation: exploration of mechanisms. Biophys J 99(4):997–1006

    Article  CAS  Google Scholar 

  • Heinen A, Aldakkak M, Stowe DF, Rhodes SS, Riess ML, Varadarajan SG et al (2007) Reverse electron flow-induced ROS production is attenuated by activation of mitochondrial Ca2+-sensitive K+ channels. Am J Physiol Heart Circ Physiol 293(3):H1400–H1407

    Article  CAS  Google Scholar 

  • Hoppe UC (2010) Mitochondrial calcium channels. FEBS Lett 584(10):1975–1981

    Article  CAS  Google Scholar 

  • Jung DW, Apel LM, Brierley GP (1992) Transmembrane gradients of free Na+ in isolated heart mitochondria estimated using a fluorescent probe. Am J Physiol 262(4 Pt 1):C1047–C1055

    CAS  Google Scholar 

  • Jung DW, Baysal K, Brierley GP (1995) The sodium-calcium antiport of heart mitochondria is not electroneutral. J Biol Chem 270(2):672–678

    Article  CAS  Google Scholar 

  • Kaasik A, Safiulina D, Zharkovsky A, Veksler V (2007) Regulation of mitochondrial matrix volume. Am J Physiol Cell Physiol 292(1):C157–C163

    Article  CAS  Google Scholar 

  • Kim B, Matsuoka S (2008) Cytoplasmic Na+-dependent modulation of mitochondrial Ca2+ via electrogenic mitochondrial Na+-Ca2+ exchange. J Physiol 586(6):1683–1697

    Article  CAS  Google Scholar 

  • Li W, Shariat-Madar Z, Powers M, Sun X, Lane RD, Garlid KD (1992) Reconstitution, identification, purification, and immunological characterization of the 110-kDa Na+/Ca2+ antiporter from beef heart mitochondria. J Biol Chem 267(25):17983–17989

    CAS  Google Scholar 

  • Nicholls DG, Chalmers S (2004) The integration of mitochondrial calcium transport and storage. J Bioenerg Biomembr 36(4):277–281

    Article  CAS  Google Scholar 

  • Olson ML, Chalmers S, McCarron JG (2012) Mitochondrial organization and Ca2+ uptake. Biochem Soc Trans 40(1):158–167

    Article  CAS  Google Scholar 

  • Palty R, Silverman WF, Hershfinkel M, Caporale T, Sensi SL, Parnis J et al (2010) NCLX is an essential component of mitochondrial Na+/Ca2+ exchange. Proc Natl Acad Sci U S A 107(1):436–441

    Article  CAS  Google Scholar 

  • Paucek P, Jaburek M (2004) Kinetics and ion specificity of Na+/Ca2+ exchange mediated by the reconstituted beef heart mitochondrial Na+/Ca2+ antiporter. Biochim Biophys Acta 1659(1):83–91

    Article  CAS  Google Scholar 

  • Pradhan RK, Beard DA, Dash RK (2010a) A biophysically based mathematical model for the kinetics of mitochondrial Na+-Ca2+ antiporter. Biophys J 98(2):218–230

    Article  CAS  Google Scholar 

  • Pradhan RK, Qi F, Beard DA, Dash RK (2010b) Characterization of membrane potential dependency of mitochondrial Ca2+ uptake by an improved biophysical model of mitochondrial Ca2+ uniporter. PLoS One 5(10):e13278

    Article  Google Scholar 

  • Santo-Domingo J, Demaurex N (2010) Calcium uptake mechanisms of mitochondria. Biochim Biophys Acta 1797(6–7):907–912

    CAS  Google Scholar 

  • Saotome M, Katoh H, Satoh H, Nagasaka S, Yoshihara S, Terada H et al (2005) Mitochondrial membrane potential modulates regulation of mitochondrial Ca2+ in rat ventricular myocytes. Am J Physiol Heart Circ Physiol 288(4):H1820–H1828

    Article  CAS  Google Scholar 

  • Scaduto RC Jr, Grotyohann LW (1999) Measurement of mitochondrial membrane potential using fluorescent rhodamine derivatives. Biophys J 76(1 Pt 1):469–477

    Article  CAS  Google Scholar 

  • Starkov AA (2010) The molecular identity of the mitochondrial Ca2+ sequestration system. FEBS J 277(18):3652–3663

    Article  CAS  Google Scholar 

  • Wei AC, Liu T, Cortassa S, Winslow RL, O’Rourke B (2011) Mitochondrial Ca2+ influx and efflux rates in guinea pig cardiac mitochondria: low and high affinity effects of cyclosporine A. Biochim Biophys Acta 1813(7):1373–1381

    Article  CAS  Google Scholar 

  • Wei AC, Liu T, Winslow RL, O’Rourke B (2012) Dynamics of matrix-free Ca2+ in cardiac mitochondria: two components of Ca2+ uptake and role of phosphate buffering. J Gen Physiol 139(6):465–478

    Article  CAS  Google Scholar 

  • Zoccarato F, Nicholls D (1982) The role of phosphate in the regulation of the independent calcium-efflux pathway of liver mitochondria. Eur J Biochem 127(2):333–338

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amadou K. S. Camara.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 1525 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blomeyer, C.A., Bazil, J.N., Stowe, D.F. et al. Dynamic buffering of mitochondrial Ca2+ during Ca2+ uptake and Na+-induced Ca2+ release. J Bioenerg Biomembr 45, 189–202 (2013). https://doi.org/10.1007/s10863-012-9483-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-012-9483-7

Keywords

Navigation