Skip to main content
Log in

Oxidoreductase activity of chromatophores and purified cytochrome bc 1 complex from Rhodobacter sphaeroides: a possible role of cardiolipin

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Osmotic shock was used as a tool to obtain cardiolipin (CL) enriched chromatophores of Rhodobacter sphaeroides. After incubation of cells in iso- and hyper-osmotic buffers both chromatophores with a physiological lipid profile (Control) and with an almost doubled amount of CL (CL enriched) were isolated. Spectroscopic properties, reaction centre (RC) and reducible cytochrome (cyt) contents in Control and CL enriched chromatophores were the same. The oxidoreductase activity was found higher for CL enriched than for Control chromatophores, raising from 60 ± 2 to 93 ± 3 mol cyt c s−1 (mol total cyt c)−1. Antymicin and myxothiazol were tested to prove that oxidoreductase activity thus measured was mainly attributable to the cyt bc 1 complex. The enzyme was then purified from BH6 strain yielding a partially delipidated and almost inactive cyt bc 1 complex, although the protein was found to maintain its structural integrity in terms of subunit composition. The ability of CL in restoring the activity of the partially delipidated cyt bc 1 complex was proved in micellar systems by addition of exogenous CL. Results here reported indicate that CL affects oxidoreductase activity in the bacterium Rhodobacter sphaeroides both in chromatophore and in purified cyt bc 1 complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson RG, Jacobson K (2002) A role for lipid shells in targeting proteins to caveolae, rafts, and other lipid domains. Science 296:1821–1825

    Article  CAS  Google Scholar 

  • Arias-Cartin R, Grimaldi S, Pommier J, Lanciano P, Schaefer C, Arnoux P et al (2011) Cardiolipin-based respiratory complex activation in bacteria. Proc Natl Acad Sci 108(19):7781–7786. doi:10.1073/pnas.1010427108

    Article  CAS  Google Scholar 

  • Bowyer JR, Tierney GV, Crofts AR (1979) Secondary electron transfer in chromatophores of Rhodopseudomonas capsulata A1a pho+. Binary out-of-phase oscillations in ubisemiquinone formation and cytochrome b 50 reduction with consective light flashes. FEBS Lett 101(1):201–206

    Article  CAS  Google Scholar 

  • Contreras F-X, Ernst AM, Wieland F, Brügger B (2011). Specificity of intramembrane protein–lipid interactions. Cold Spring Harbor Perspect Biol 3(6), doi:10.1101/cshperspect.a004705

  • Crofts AR, Hong S, Ugulava N, Barquera B, Gennis R, Guergova-Kuras M et al (1999) Pathways for proton release during ubihydroquinone oxidation by the bc 1 complex. Proc Natl Acad Sci USA 96:10021–10026

    Article  CAS  Google Scholar 

  • De Leo V, Catucci L, Ventrella A, Milano F, Agostiano A, Corcelli A (2009) Cardiolipin increases in chromatophores isolated from Rhodobacter sphaeroides after osmotic stress: structural and functional roles. J Lipid Res 50:256–264

    Article  Google Scholar 

  • Drews G, Golecki JR (1995) Structure, molecular organization, and biosynthesis of membranes of purple bacteria. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria (Advances in photosynthesis, Vol. 2). Kluwer Academic Publishers, The Netherlands, pp 231–257

    Google Scholar 

  • Esser L, Elberry M, Zhou F, Yu C, Yu L, Xia D (2008) Inhibitor-complexed structures of the cytochrome bc 1 from the photosynthetic bacterium Rhodobacter sphaeroides. J Biol Chem 283:2846–2857

    Article  CAS  Google Scholar 

  • Fyfe PK, Hughes AV, Heathcote P, Jones MR (2005) Proteins, chlorophylls and lipids: X-ray analysis of a three-way relationship. Trends Plant Sci 10(6):275–282. doi:10.1016/j.tplants.2005.04.007

    Article  CAS  Google Scholar 

  • Gomez BJ, Robinson NC (1999) Phospholipase digestion of bound cardiolipin reversibly inactivates bovine cytochrome bc 1 . Biochemistry 38:9031–9038

    Article  CAS  Google Scholar 

  • Gray KA, Daldal F (1995) Mutational studies of the cytochrome bc 1 complexes. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria (Advances in photosynthesis, Vol. 2). Kluwer Academic Publishers, The Netherlands, pp 747–774

    Google Scholar 

  • Guergova-Kuras M, Salcedo-Hernandez R, Bechmann G, Kuras R, Gennis RB, Crofts AR (1999) Expression and one-step purification of a fully active polyhistidine-tagged cytochrome bc 1 complex from Rhodobacter sphaeroides. Protein Expr Purif 15(3):370–380

    Article  CAS  Google Scholar 

  • Haines TH (1983) Anionic lipid headgroups as a proton-conducting pathway along the surface of membranes: A hypothesis. Proc Natl Acad Sci USA 80(January):160–164

    Article  CAS  Google Scholar 

  • Hunter CN (1995) Genetic manipulation of the antenna complexes of purple bacteria. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer Academic Publishers, The Netherlands, pp 473–501

    Google Scholar 

  • Jones MR (2007) Lipids in photosynthetic reaction centres: Structural roles and functional holes. Prog Lipid Res 46(1):56–87. doi:10.1016/j.plipres.2006.06.001

    Article  CAS  Google Scholar 

  • Lange C, Nett JH, Trumpower BL, Hunte C (2001) Specic roles of protein phospholipid interactions in the yeast cytochrome bc 1 complex structure. EMBO J 20(23):6591–6600

    Article  CAS  Google Scholar 

  • Lee AG (2003) Lipid–protein interactions in biological membranes: a structural perspective. Biochim Biophys Acta (BBA) - Biomembranes 1612(1):1–40. doi:10.1016/S0005-2736(03)00056-7

    Article  CAS  Google Scholar 

  • Lee AG (2004) How lipids affect the activities of integral membrane proteins. Biochim Biophys Acta (BBA) - Biomembranes 1666:62–87. doi:10.1016/j.bbamem.2004.05.012

    Article  CAS  Google Scholar 

  • Romantsov T, Stalker L, Culham DE, Wood JM (2008) Cardiolipin controls the osmotic stress response and the subcellular location of transporter PropP in Escherichia coli. J Biol Chem 283:12314–12323

    Article  CAS  Google Scholar 

  • Russel NJ, Harwood JL (1979) Changes in the acyl lipid composition of photosynthetic bacteria grown under photosynthetic and non-photosynthetic conditions. Biochem J 181:339–345

    Google Scholar 

  • Schägger H, von Jagow G (1987) Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166(2):368–379. doi:10.1016/0003-2697(87)90587-2

    Article  Google Scholar 

  • Schägger H, Hagen T, Roth B, Brandt U, Link TA, von Jagow G (1990) Phospholipid specificity of bovine heart bc 1 complex. Eur J Biochem 190(1):123–130. doi:10.1111/j.1432-1033.1990.tb15554.x

    Article  Google Scholar 

  • Vanneste WH (1966) Molecular proportion of the fixed cytochrome components of the respiratory chain of Keilin-Hartree particles and beef heart mitochondria. Biochim Biophys Acta 113:175–178

    Article  CAS  Google Scholar 

  • Verméglio A, Joliot P (1999) The photosynthetic apparatus of Rhodobacter sphaeroides. Trends Microbiol 7:435–440

    Article  Google Scholar 

  • Wenz T, Hielscher R, Hellwig P, Schägger H, Richers S, Hunte C (2009) Role of phospholipids in respiratory cytochrome bc 1 complex catalysis and supercomplex formation. Biochim Biophys Acta (BBA) - Bioenergetics 1787(6):609–616. doi:10.1016/j.bbabio.2009.02.012

    Article  CAS  Google Scholar 

  • Yu C-A, Yu L (1980) Structural role of phospholipids in ubiquinol-cytochrome c reductase. Biochemistry 19(25):5715–5720. doi:10.1021/bi00566a008

    Article  CAS  Google Scholar 

  • Zhang X, Hiser C, Tamot B, Benning C, Reid GE, Ferguson-Miller SM (2011a) Combined genetic and metabolic manipulation of lipids in Rhodobacter sphaeroides reveals non-phospholipids substitutions in fully active cytochrome c oxidase. Biochemistry 50:3891–3902

    Article  CAS  Google Scholar 

  • Zhang X, Tamot B, Hiser C, Reid GE, Benning C, Ferguson-Miller SM (2011b) Cardiolipin deficiency in Rhodobacter sphaeroides alters the lipid profile of membranes and of crystallized cytochrome oxidase, but structure and function are maintained. Biochemistry 50:3879–3890

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucia Catucci.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Catucci, L., De Leo, V., Milano, F. et al. Oxidoreductase activity of chromatophores and purified cytochrome bc 1 complex from Rhodobacter sphaeroides: a possible role of cardiolipin. J Bioenerg Biomembr 44, 487–493 (2012). https://doi.org/10.1007/s10863-012-9447-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-012-9447-y

Keywords

Navigation