Advertisement

Journal of Bioenergetics and Biomembranes

, Volume 44, Issue 2, pp 265–272 | Cite as

Relationship between rates of respiratory proton extrusion and ATP synthesis in obligately alkaliphilic Bacillus clarkii DSM 8720T

  • Toshikazu Hirabayashi
  • Toshitaka Goto
  • Hajime Morimoto
  • Kazuaki Yoshimune
  • Hidetoshi Matsuyama
  • Isao Yumoto
Article

Abstract

To elucidate the energy production mechanism of alkaliphiles, the relationship between the rate of proton extrusion via the respiratory chain and the corresponding ATP synthesis rate was examined in obligately alkaliphilic Bacillus clarkii DSM 8720T and neutralophilic Bacillus subtilis IAM 1026. The oxygen consumption rate of B. subtilis IAM 1026 cells at pH 7 was approximately 2.5 times higher than that of B. clarkii DSM 8720T cells at pH 10. The H+/O ratio of B. clarkii DSM 8720T cells was approximately 1.8 times higher than that of B. subtilis IAM 1026 cells. On the basis of oxygen consumption rate and H+/O ratio, the rate of proton translocation via the respiratory chain in B. subtilis IAM 1026 is expected to be approximately 1.4 times higher than that in B. clarkii DSM 8720T. Conversely, the rate of ATP synthesis in B. clarkii DSM 8720T at pH 10 was approximately 7.5 times higher than that in B. subtilis IAM 1026 at pH 7. It can be predicted that the difference in rate of ATP synthesis is due to the effect of transmembrane electrical potential (Δψ) on protons translocated via the respiratory chain. The Δψ values of B. clarkii DSM 8720T and B. subtilis IAM 1026 were estimated as −192 mV (pH 10) and −122 mV (pH 7), respectively. It is considered that the discrepancy between the rates of proton translocation and ATP synthesis between the strains used in this study is due to the difference in ATP production efficiency per translocated proton between the two strains caused by the difference in Δψ.

Keywords

Alkaliphilic Respiration Membrane electrical potential Bacillus clarkii Bacillus subtilis Proton translocation ATP synthesis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antonenko YN, Pohl P (1998) FEBS Lett 429:197–200CrossRefGoogle Scholar
  2. Aono R, Kaneko H, Horikoshi K (1996) Biosci Biotech Biochem 60:1243–1247CrossRefGoogle Scholar
  3. Brändé M, Sandén T, Brezinski P, Widengren J (2006) Proc Natl Acad Sci USA 103:19766–19770CrossRefGoogle Scholar
  4. Fee JA, Choc MG, Finding KL, Lorence R, Yoshida T (1980) Proc Natl Acad Sci USA 77:147–151CrossRefGoogle Scholar
  5. Georgievskii Y, Medvedev SE, Stuchebrukhov AA (2002a) Biophys J 82:2833–2846CrossRefGoogle Scholar
  6. Georgievskii Y, Medvedev SE, Stuchebrukhov AA (2002b) J Chem Phys 116:1692–1699CrossRefGoogle Scholar
  7. Goto T, Matsuno T, Hishimuma-Narisawa M, Yamazaki K, Matsuyama H, Inoue N, Yumoto I (2005) J Biosci Bioeng 100:365–379CrossRefGoogle Scholar
  8. Gregory L, Ferguson-Miller S (1989) Biochemistry 28:2655–2662CrossRefGoogle Scholar
  9. Guffanti A, Hicks DB (1991) J Gen Microbiol 137:2375–2379Google Scholar
  10. Guffanti AA, Krulwich TA (1992) J Biol Chem 267:9580–9585Google Scholar
  11. Guffanti AA, Krulwich TA (1994) J Biol Chem 269:21576–21582Google Scholar
  12. Guffanti AA, Finkelthal O, Hicks DB, Falk L, Sidhu A, Garro A, Krulwich TA (1986) J Bacteriol 167:766–773Google Scholar
  13. Hicks DB, Krulwich TA (1995) Biochim Biophys Acta 1229:303–314CrossRefGoogle Scholar
  14. Hisae N, Aizawa K, Koyama N, Sekiguchi T, Nosoh Y (1983) Biochim Biophys Acta 743:232–238CrossRefGoogle Scholar
  15. Hoffmann A, Dimroth P (1991) Eur J Biochem 201:467–473CrossRefGoogle Scholar
  16. Jones CW, Pool RK (1985) Methods Microbiol 18:285–328CrossRefGoogle Scholar
  17. Kaback HR (1971) Meth Enzymol 22:99–120CrossRefGoogle Scholar
  18. Kitada M, Guffanti AA, Krulwich TA (1982) J Bacteriol 152:1096–1104Google Scholar
  19. Krulwich TA, Guffanti AA (1989) Annu Rev Microbiol 43:435–463CrossRefGoogle Scholar
  20. Lewis R, Belkina S, Krulwich TA (1980) Biochem Biophys Res Commun 95:857–863CrossRefGoogle Scholar
  21. Liu X, Gong X, Hicks DB, Krulwich TA, Yu L, Yu CA (2007) Biochemistry 46:306–313CrossRefGoogle Scholar
  22. Liu J, Krulwich TA, Hicks DB (2008) Biochim Biophys Acta 1777:453–461CrossRefGoogle Scholar
  23. Ludwig B, Schatz G (1980) Proc Natl Acad Sci USA 77:196–200CrossRefGoogle Scholar
  24. Matsuno T, Yoshimune K, Yumoto I (2012) J Bioeng Biomembr 43:473–481CrossRefGoogle Scholar
  25. Mitchell P (1961) Nature 191:144–148CrossRefGoogle Scholar
  26. Mulkidjanian AY (2006) Biochim Biophys Acta 1757:415–427CrossRefGoogle Scholar
  27. Nielsen P, Rainey FA, Outtrup H, Priest FG, Fritze D (1994) FEMS Micorobiol Lett 117:61–66CrossRefGoogle Scholar
  28. Nielsen P, Fritze D, Priest FG (1995) Microbiology 141:1745–1761CrossRefGoogle Scholar
  29. Ogami S, Hijikata S, Tsukahara T, Mie Y, Matsuno T, Morita N, Hara I, Yamazaki K, Inoue N, Yokota A, Hoshino T, Yoshimune K, Yumoto I (2009) Extremophiles 13:491–504CrossRefGoogle Scholar
  30. Papa S, Guerrieri F, Izzo G (1983) Biochem J 216:259–272Google Scholar
  31. Quirk PG, Hicks DB, Krulwich TA (1993) J Bio Chem 268:678–685Google Scholar
  32. Shioi J, Tsuura S, Imae Y (1980) J Bacteriol 144:891–897Google Scholar
  33. Sone N, Fujiwara Y (1991) J Biochem 110:1016–1021Google Scholar
  34. Sturr MG, Guffanti AA, Krulwich TA (1994) J Bacteriol 176:3111–3116Google Scholar
  35. Sugiyama S, Matsukura H, Koyama N, Nosoh Y, Imae Y (1986) Biochim Biophys Acta 852:38–45CrossRefGoogle Scholar
  36. Xu XM, Koyama N, Cui M, Yamagishi A, Nosoh Y, Ohshima T (1991) J Biochem 109:678–683Google Scholar
  37. Yaginuma A, Tsukita S, Sakamoto J, Sone N (1997) J Biochem 122:969–976Google Scholar
  38. Yoshimune K, Morimoto H, Hirano Y, Sakamoto J, Matsuyama H, Yumoto I (2010) J Bioenerg Biomembr 42:111–116CrossRefGoogle Scholar
  39. Yumoto I (2002) J Biosci Bioeng 93:342–353Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Toshikazu Hirabayashi
    • 1
  • Toshitaka Goto
    • 2
  • Hajime Morimoto
    • 1
  • Kazuaki Yoshimune
    • 3
    • 4
  • Hidetoshi Matsuyama
    • 1
  • Isao Yumoto
    • 2
    • 3
  1. 1.Department of Bioscience and Technology, School of Biological Science and EngineeringTokai UniversitySapporoJapan
  2. 2.Graduate School of AgricultureHokkaido UniversitySapporoJapan
  3. 3.Bioproduction Research InstituteNational Institute of Advanced Industrial Science and Technology (AIST)SapporoJapan
  4. 4.Department of Applied Molecular Chemistry, College of Industrial TechnologyNihon UniversityNarashinoJapan

Personalised recommendations