Journal of Bioenergetics and Biomembranes

, Volume 44, Issue 1, pp 189–197 | Cite as

ATAD3, a vital membrane bound mitochondrial ATPase involved in tumor progression



ATAD3 (ATPase family AAA Domain-containing protein 3) is a mitochondrial membrane bound ATPase whose function has not yet been discovered but its role is essential for embryonic development. The ATAD3 gene has existed since the pluri-cellular organisms with specialized tissues and has remained unique until vertebrates. In primates and human, two other genes have appeared (called ATAD3B and ATAD3C versus ATAD3A the ancestral gene). ATAD3 knock-down in different non-transformed cell lines is associated with drastic changes in the mitochondrial network, inhibition of proliferation and modification of the functional interactions between mitochondria and endoplasmic reticulum. However, the analysis of the cellular properties of ATAD3A and ATAD3B in different human cancer cell lines shows on the contrary that they can present anti-proliferative and chemoresistant properties. ATAD3 may therefore be implicated in an unknown but essential and growth-linked mitochondrial function existing since pluri-cellular organization and involved in tumorigenesis.


ATAD3 Mitochondria Inner membrane ATPase 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Zeller KI, Jegga AG, Aronow BJ, O’Donnell KA, Dang CV (2003) An integrated database of genes responsive to the Myc oncogenic transcription factor: identification of direct genomic targets. Genome Biol 4(10):R69CrossRefGoogle Scholar
  2. Da Cruz S, Xenarios I, Langridge J, Vilbois F, Parone PA, Martinou JC (2003) Proteomic analysis of the mouse liver mitochondrial inner membrane. J Biol Chem 278(42):41566–71CrossRefGoogle Scholar
  3. Frickey T, Lupas AN (2004) Phylogenitic analysis of AAA proteins. J Struct Biol 146:2–10CrossRefGoogle Scholar
  4. Kamath RS, Ahringer J (2003) Genome-wide RNAi screening in Caenorhabditis elegans. Methods 30:313–21CrossRefGoogle Scholar
  5. Hoffmann M, Bellance N, Rossignol R, Koopman WJ, Willems PH, Mayatepek E, Bossinger O, Distelmaier FC (2009) elegans ATAD-3 is essential for mitochondrial activity and development. PLoS One 4(10):e7644CrossRefGoogle Scholar
  6. Gilquin B, Taillebourg E, Cherradi N, Hubstenberger A, Gay O, Merle N, Assard N, Fauvarque MO, Tomohiro S, Kuge O, Baudier J (2010a) The AAA+ATPase ATAD3A controls mitochondrial dynamics at the interface of the inner and outer membrane. Mol Cell Biol 30(8):1984–96CrossRefGoogle Scholar
  7. Hubstenberger A (2006) MSBP, une protéine identifiée comme une cible de la S100B, impliquée dans la distribution subcellulaire des mitochondries. Thèse de l’Université J. Fourier 2006.
  8. Hubstenberger A, Labourdette G, Baudier J, Rousseau D (2008) ATAD3A and ATAD3B are distal 1p-located genes differentially expressed in human glioma cell lines and present in vitro anti-oncogenic and chemoresistant properties. Exp Cell Res 314:2870–2883CrossRefGoogle Scholar
  9. Schaffrik M, Mack B, Matthias C, Rauch J, Gires O (2006) Molecular characterization of the tumor-associated antigen AAA-TOB3. Cell Mol Life Sci 63(18):2162–2174CrossRefGoogle Scholar
  10. He J, Mao CC, Reyes A, Sembongi H, Di Re M, Granycome C, Clippingdale AB, Fearnley IM, Harbour M, Robinson AJ, Reichelt S, Spelbrink JN, Walker JE, Holt IJ (2007) The AAA + protein ATAD3 has displacement loop binding propeties and is involved in mitochondrial nucleoid organization. J Cell Biol 176(2):141–146CrossRefGoogle Scholar
  11. Wang Y, Bogenhagen DF (2006) Human mitochondrial DNA nucleoids are linked to protein folding machinery and metabolic enzymes at the mitochondrial inner membrane. J Biol Chem 281(35):25791–802CrossRefGoogle Scholar
  12. Bogenhagen DF, Rousseau D, Burke S (2008) The layered structure of human mitochondrial DNA nucleoids. J Biol Chem 283(6):3665–3667CrossRefGoogle Scholar
  13. Hubstenberger A, Merle N, Charton R, Brandolin G, Rousseau D (2010) Topological analysis of ATAD3A insertion in purified human mitochondria. J Bioenerg Biomembr 42(2):143–50CrossRefGoogle Scholar
  14. Simmons DM, Voss JW, Ingraham HA, Holloway JM, Broide RS, Rosenfeld MG, Swanson LW (1990) Pituitary cell phenotypes involve cell-specific Pit-1 mRNA translation and synergistic interactions with other classes of transcription factors. Genes Dev 4(5):695–711CrossRefGoogle Scholar
  15. Sassoon D, Lyons G, Wright WE, Lin V, Lassar A, Weintraub H, Buckingham M (1989) Expression of two myogenic regulatory factors myogenin and MyoD1 during mouse embryogenesis. Nature 341(6240):303–307CrossRefGoogle Scholar
  16. Hinterberger TJ, Sassoon DA, Rhodes SJ, Konieczny SF (1991) Expression of the muscle regulatory factor MRF4 during somite and skeletal myofiber development. Dev Biol 147(1):144–156CrossRefGoogle Scholar
  17. Pownall ME, Gustafsson MK, Emerson CP Jr (2002) Myogenic regulatory factors and the specification of muscle progenitors in vertebrate embryons. Annu Rev Cell Dev Biol 18:747–783CrossRefGoogle Scholar
  18. Smith JS, Alderete B, Minn Y, Borell TJ, Perry A, Mohapatra G, Mohapatra G, Hosek SM, Kimmel D, O’Fallon J, Yates A, Feuerstein BG, Burger PC, Scheithauer BW, Jenkins RB (1999) Localization of common deletion regions on 1p and 19q in human glioma and their association with histological subtype. Oncogene 18:4144–4152CrossRefGoogle Scholar
  19. Correia AR, Pastore C, Adinolfi S, Pastore A, Gomes CM (2008) Dynamics, stability and iron-binding activity of frataxin clinical mutants. FEBS J 275(14):3680–90CrossRefGoogle Scholar
  20. Shan Y, Napoli E, Cortopassi G (2007) Mitochondrial frataxin interacts with ISD11 of the NFS1/ISCU complex and multiple mitochondrial chaperones. Hum Mol Genet 16(8):929–41CrossRefGoogle Scholar
  21. Gires O, Münz M, Schaffrik M, Kieu C, Rauch J, Ahlemann M, Eberle D, Mack B, Wollenberg B, Lang S, Hofmann T, Hammerschmidt W, Zeidler R (2004) Profile identification of disease-associated humoral antigens using AMIDA, a novel proteomics-based technology. Cell Mol Life Sci 61(10):1198–207CrossRefGoogle Scholar
  22. Geuijen CA, Bijl N, Smit RC, Cox F, Throsby M, Visser TJ, Jongeneelen MA, Bakker AB, Kruisbeek AM, Goudsmit J, de Kruif JA (2005) proteomic approach to tumour target identification using phage display, affinity purification and mass spectrometry. Eur J Cancer 41(1):178–87CrossRefGoogle Scholar
  23. Gilquin B, Cannon BR, Hubstenberger A, Moulouel B, Falk E, Merle N, Assard N, Kieffer S, Rousseau D, Wilder PT, Weber DJ, Baudier J (2010b) The calcium-dependent interaction between S100B and the mitochondrial AAA-ATPase ATAD3A and the role of this complex in the cytoplasmic processing of ATAD3A. Mol Cell Biol 30(11):2724–36CrossRefGoogle Scholar
  24. Fang HY, Chang CL, Hsu SH, Huang CY, Chiang SF, Chiou SH, Huang CH, Hsiao YT, Lin TY, Chiang IP, Hsu WH, Sugano S, Chen CY, Lin CY, Ko WJ, Chow KC (2010) ATPase family AAA domain-containing 3A is a novel anti-apoptotic factor in lung adenocarcinoma cells. J Cell Sci 123(7):1171–80CrossRefGoogle Scholar
  25. Kornmann B (2010) Le complexe ERMES : une connexion haut débit entre le réticulum endoplasmique et les mitochondries. Médecine/Science (2)Google Scholar
  26. Kornmann B, Walter P (2010) ERMES-mediated ER-mitochondria contacts: molecular hubs for the regulation of mitochondrial biology. J Cell Sci 123:1389–93CrossRefGoogle Scholar
  27. Hayashi T, Rizzuto R, Hajnoczky G, Su TP (2009) MAM: more than just a housekeeper. Trends Cell Biol 19(2):81–8CrossRefGoogle Scholar
  28. Jiang Y, Liu X, Fang X, Wang X (2009) Proteomic analysis of mitochondria in Raji cells following exposure to radiation: implications for radiotherapy response. Protein Pept Lett 16(11):1350–9CrossRefGoogle Scholar
  29. Chen TC, Hung YC, Lin TY, Chang HW, Chiang IP, Chen YY, Chow KC (2011) Human papillomavirus infection and expression of ATPase family AAA domain containing 3A, a novel anti-autophagy factor, in uterine cervical cancer. Int J Mol Med 28(5):689–96. doi: 10.3892/ijmm.2011.743 Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Laboratoire de Bioénergétique Fondamentale et Appliquée U1055 INSERMUniversité Joseph FourierGrenoble cedex 9France

Personalised recommendations