Journal of Bioenergetics and Biomembranes

, Volume 44, Issue 1, pp 155–161 | Cite as

Transport and cytotoxicity of the anticancer drug 3-bromopyruvate in the yeast Saccharomyces cerevisiae

  • Paweł Lis
  • Marek Zarzycki
  • Young H. Ko
  • Margarida Casal
  • Peter L. Pedersen
  • Andre Goffeau
  • Stanisław Ułaszewski
Open Access


We have investigated the cytotoxicity in Saccharomyces cerevisiae of the novel antitumor agent 3-bromopyruvate (3-BP). 3-BP enters the yeast cells through the lactate/pyruvate H+ symporter Jen1p and inhibits cell growth at minimal inhibitory concentration of 1.8 mM when grown on non-glucose conditions. It is not submitted to the efflux pumps conferring Pleiotropic Drug Resistance in yeast. Yeast growth is more sensitive to 3-BP than Gleevec (Imatinib methanesulfonate) which in contrast to 3-BP is submitted to the PDR network of efflux pumps. The sensitivity of yeast to 3-BP is increased considerably by mutations or chemical treatment by buthionine sulfoximine that decrease the intracellular concentration of glutathione.


Saccharomyces cerevisiae 3-bromopyruvate Multidrug resistance Transport Glutathione Gleevec Anti-cancer chemotherapy 


  1. Balzi E, Chen W, Ulaszewski S, Capieaux E, Goffeau A (1987) The multidrug resistance gene PDR1 from Saccharomyces cerevisiae. J Biol Chem 262(35):16871–16879Google Scholar
  2. Barnard JP, Reynafarje B, Pedersen PL (1993) Glucose Catabolism in African Trypanosomes. J Biol Chem 268(5):3661Google Scholar
  3. Cannon RD, Lamping E, Holmes AR, Niimi K, Baret PV, Keniya MV et al (2009) Efflux-mediated antifungal drug resistance. Clin Microbiol Rev 22(2):291–321CrossRefGoogle Scholar
  4. Cardenas ME, Cruz MC, Del Poeta M, Chung N, Perfect JR, Heitman J (1999) Antifungal activities of antineoplastic agents: Saccharomyces cerevisiae as a model system to study drug action. Clin Microbiol Rev 12(4):583–611Google Scholar
  5. Casal M, Paiva S, Andrade RP, Gancedo C, Leão C (1999) The lactate-proton symport of Saccharomyces cerevisiae is encoded by JEN1. J Bacteriol 181(8):2620–2623Google Scholar
  6. Cassio F, Leão C, van Uden N (1987) Transport of lactate and other short-chain monocarboxylates in the yeast Saccharomyces cerevisiae. Appl Environ Microbiol 53(3):509–513Google Scholar
  7. Cohen MH, Williams G, Johnson JR, Duan J, Gobburu J, Rahman A et al (2002) Approval summary for imatinib mesylate capsules in the treatment of chronic myelogenous leukemia. Clin Cancer Res 8(1):935–942Google Scholar
  8. De Hertogh B, Carvajal E, Talla E, Dujon B, Baret P, Goffeau A (2002) Phylogenetic classification of transporters and other membrane proteins from Saccharomyces cerevisiae. Funct Integr Genom 2(4–5):154–170Google Scholar
  9. De Lima LPO, De Faria TRB, Portes JA, Pinho NZ, De Souza TG, De Souza, W et al (2011) 3-BrPA And FeHP(SO4). Affect the growth of Toxoplasma gondii and induce the conversion of tachyzoites in bradyzoites during interaction with LLC-MK2. Laboratorio de Tecnologia em Bioquimica e Microscopia, UEZO, Rio de Janeiro, RJ. Accessed 2011.
  10. Decottignies A, Grant MA, Nichols JW, de Wet H, McIntosh DB, Goffeau A (1988) ATPase and multidrug transport activities of the overexpressed yeast ABC protein Yor1p. J Biol Chem 273(20):12612–12622CrossRefGoogle Scholar
  11. Decottignies A, Rogers B, Kolaczkowski M, Carvajal E, Balzi E, Conseil G et al (2001) The pleiotropic drug ABC transporters from Saccharomyces cerevisiae. In: Microbial multidrug efflux. (pp.157-176). Horizon Scientific Press, Wymondham, UKGoogle Scholar
  12. Dusre L, Mimnaugh G, Myers CE, Sinha BK (1989) Potentiation of doxorubicin cytotoxicity by buthionine sulfoximine in multidrug-resistant human breast tumor cells. Cancer Res 49(1):511–515Google Scholar
  13. Dylag M, Pruchnik H, Pruchnik F, Majkowska-Skrobek G, Ułaszewski S (2010) Antifungal activity of organotin compounds with functionalized carboxylates evaluated by the microdilution bioassay in vitro. Med Mycol 48(2):373–383CrossRefGoogle Scholar
  14. Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82(1):70–77CrossRefGoogle Scholar
  15. Endicott JA, Ling V (1989) The biochemistry of P-glycoprotein-mediated multidrug resistance. Annu Rev Biochem 58(1):1137–1171CrossRefGoogle Scholar
  16. Geschwind JF, Ko YH, Torbenson MS, Magee C, Pedersen PL (2002) Novel therapy for liver cancer: direct intraarterial injection of a potent inhibitor of ATP production. Cancer Res 62(1):3909–3913Google Scholar
  17. Goffeau A, Barrell BG, Bussey H, Davis RW, Dujon B, Feldmann H et al (1996) Life with 6000 Genes. Science, 274(5287), 546 + 563-567Google Scholar
  18. Gonzalez B, François J, Renaud M (1997) A rapid and reliable method for metabolite extraction in yeast using boiling buffered ethanol. Yeast 13(1):1347–1355CrossRefGoogle Scholar
  19. Gottesman MM, Pastan I (1993) Biochemistry of multidrug resistance mediated by the multudrug transporter. Annu Rev Biochem 62(1):385–427CrossRefGoogle Scholar
  20. Hoepfl J, Miething C, Grundler R, Gotze KS, Peschel C, Duyster J (2002) Effects of imatinib on bone marrow engraftment in syngenic mice. Leukemia 16(9):1584CrossRefGoogle Scholar
  21. Izumi H, Takahashi M, Yramoto H, Nakayama Y, Oyama T, Wang KY et al (2011) Monocarboxylate transporters 1 and 4 are involved in the invasion activity of human lung cancer. Canc Sci 102(5):1007–1013CrossRefGoogle Scholar
  22. Kaiser C, Michaelis S, Mitchel AA (1994) Cold Spring Harbor laboratory course manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, Methods in yeast geneticsGoogle Scholar
  23. Karathia H, Vilaprinyo E, Sorribas A, Alves R (2011) Saccharomyces cerevisiae as a model organism: a comparative study. PLoS One 6(2):1–17CrossRefGoogle Scholar
  24. Ko YH, Pedersen PL, Geschwind JF (2001) Glucose catabolism in the rabbit VX2 tumor model for liver cancer: characterization and targeting hexokinase. Cancer Lett 173(1):83–91CrossRefGoogle Scholar
  25. Ko YH, Smith BL, Wang Y, Pomper MG, Rini DA, Torbenson MS et al (2004) Advanced cancers: eradication in all cases using 3- bromopyruvate therapy to deplete ATP. Biochem Biophys Res Comm 5(1):269–275CrossRefGoogle Scholar
  26. Kolaczkowski M, Kolaczowska A, Luczynski J, Witek S, Goffeau A (1998) In vivo characterization of the drug resistance profile of the major ABC transporters and other components of the yeast pleiotropic drug resistance network. Microb Drug Res 4(3):143–158CrossRefGoogle Scholar
  27. Kurtz JE, Dufour P, Bergerat JP, Exinger F (2005) Saccharomyces Cerevisiae as a genetic model in anticancer therapy. Current Pharmacogenomics 3(1):1–7CrossRefGoogle Scholar
  28. Mager W, Winderickx J (2005) Yeast as a model for medical and medicinal research. Trends Pharmacol Sci 26(5):265–273CrossRefGoogle Scholar
  29. Makuc J, Paiva S, Schauen M, Kramer R, Andre B, Casal M et al (2001) The putative monocarboxylate permeases of the yeast Saccharomyces cerevisiae do not transport monocarboxylic acids across the plasma membrane. Yeast 18(12):1131–1143CrossRefGoogle Scholar
  30. Mathupala SP, Ko YH, Pedersen PL (2006) Hexokinase II: cancer’s double-edged sword acting as both facilitator and gatekeeper of malignancy when bound to mitochondria. Oncogene 25(1):4777–4786CrossRefGoogle Scholar
  31. Mathupala SP, Ko YH, Pedersen PL (2009) Hexokinase-2 bound to mitochondria: cancer’s stygian link to the “Warburg Effect” and a pivotal target for effective therapy. Semin Canc Biol 19(1):17–24CrossRefGoogle Scholar
  32. Mathupala SP, Ko YH, Pedersen P (2010) The pivotal roles of mitochondria in cancer: Warburg and beyond and encouraging prospects for effective therapies. Biochim Biophys Acta 1797(1):1225–1230Google Scholar
  33. Ohtake Y, Satou A, Yabuuchi S (1990) Isolation and characterization of glutathione biosynthesis-deficient mutants in Saccharomyces cerevisiae. Agric Biol Chem 54(12):3145–3150CrossRefGoogle Scholar
  34. Outten CE, Falk RL, Culotta VC (2005) Cellular factors required for protection from hyperoxia toxicity in Saccharomyces cerevisiae. Biochem J 388(1):93–101CrossRefGoogle Scholar
  35. Pedersen PL (1978) Tumor mitochondria and the bioenergetics of cancer cells. Progr Exp Tumor Res 22(1):190–274Google Scholar
  36. Pedersen PL (2007) Warburg, me and hexokinase2: multiple discoveries of key molecular events underlying one of cancers’ most common phenotypes, the “Warburg Effect”, i.e., elevated glycolysis in the presence of oxygen. J Bioenerg Biomembr 39(1):211–222CrossRefGoogle Scholar
  37. Porporato PE, Dhup S, Dadlich RK, Copetti T, Sonveaux P (2010) Anticancer targets in the glycolytic metabolism of tumors: a comprehensive review. Front Pharmacol 2(49):1–18Google Scholar
  38. Prasad R, Goffeau A (2012) Yeast ATP-binding cassette transporters conferring multidrug resistance. Annual Review Microbiology, in pressGoogle Scholar
  39. Qin J-Z, Xin H, Nickoloff BJ (2010) 3-bromopyruvate induces necrotic cell death in sensitive melanoma cell lines. Biochem Biophys Res Comm 396(1):495–500CrossRefGoogle Scholar
  40. Reihl P, Stolz J (2005) The monocarboxylate transporter homolog Mch5p catalyzes riboflavin (vitamin B2) uptake in Saccharomyces cerevisiae. J Biol Chem 280(48):39809–39817CrossRefGoogle Scholar
  41. Reliene R, Schiestl RH (2006) Glutathione depletion by buthionine sulfoximine induces DNA deletions in mice. Carcinogenesis 27(2):240–244CrossRefGoogle Scholar
  42. Suter B, Auerbach D, Stagljar J (2006) Yeast-based functional genomics and proteomics technologies: the first 15 years and beyond. Biotechniques 40(1):625–644CrossRefGoogle Scholar
  43. Thomas BJ, Rothstein R (1989) Elevated recombination rates in transcriptionally active DNA. Cell 58(1):819–830Google Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  • Paweł Lis
    • 1
  • Marek Zarzycki
    • 1
  • Young H. Ko
    • 2
  • Margarida Casal
    • 3
  • Peter L. Pedersen
    • 4
  • Andre Goffeau
    • 5
  • Stanisław Ułaszewski
    • 1
  1. 1.Institute of Genetics and MicrobiologyUniversity of WroclawWroclawPoland
  2. 2.Owings MillsUSA
  3. 3.Department of Biology, Molecular and Environmental Biology Centre (CBMA)University of MinhoBragaPortugal
  4. 4.Department of Biological ChemistryJohn Hopkins University School of MedicineBaltimoreUSA
  5. 5.Institut des Sciences de la Vie, Université Catholique de Louvain-la-Neuve, 1, Place de l’UniversitéLouvain-la-NeuveBelgium

Personalised recommendations