Effect of vitamin E on characteristics of liver mitochondrial fractions from cold-exposed rats

  • P. Venditti
  • G. Napolitano
  • L. Di Stefano
  • S. Di Meo


In cold exposed rats, it is known that vitamin E induces an increase in the respiration of the whole mitochondrial population isolated from liver. To obtain information on the effects of cold exposure and vitamin E treatment on the dynamics of mitochondrial population, we determined characteristics of rat liver mitochondrial fractions, resolved at 1,000 (M1), 3,000 (M3), and 10,000 g (M10). We found that cold exposure increased the liver content of total mitochondrial proteins irrespective of vitamin E treatment. Conversely, protein distribution among the mitochondrial subpopulations was differentially affected by cold and antioxidant integration. In a cold environment, the M1 fraction, characterized by the highest O2 consumption and H2O2 production rates, underwent a remarkable protein content reduction, which was attenuated by vitamin E. These changes were dependent on the opposite effects of the two treatments on mitochondrial oxidative damage and susceptibility to swelling. The proteins of the other fractions, in which the above effects were lower, underwent smaller (M3) or no change (M10) in the treatment groups. The cold also led to an increase in O2 consumption of the M1 fraction which was accentuated by vitamin E treatment. This phenomenon and the vitamin-induced recovery of the M1 proteins supply an explanation of the previously reported increase in the respiration of the whole mitochondrial population induced by vitamin E in the liver from cold exposed rats.


Cold exposure Thyroid hormone Oxidative damage Mitochondrial fractions Antioxidants Hydrogen peroxide release 


  1. Åkerman KEO, Wikström MKF (1976) FEBS Lett 68:191–197CrossRefGoogle Scholar
  2. Azzi A, Stocker A (2000) Prog Lipid Res 39:231–255CrossRefGoogle Scholar
  3. Barja G (1999) Mitochondrial oxygen radical generation and leak,: sites of production in states 4 and 3, organ specificity, and relation to aging and longevity. J Bioenerg Biomembr 31:347–366CrossRefGoogle Scholar
  4. Barrè H, Bailly L, Rouanet JL (1987) Comp Biochem Biophys 88B:519–522CrossRefGoogle Scholar
  5. Bernardi P, Vassanelli S, Veronese P, Colonna R, Szabo I, Zoratti M (1992) J Biol Chem 267:2934–2939Google Scholar
  6. Boveris A, Costa LE, Cadenas E (1999) In: Cadenas E, Packer L (eds) Understanding the process of aging. Marcel Dekker Inc, New York, pp 1–16Google Scholar
  7. Bravo C, Vargas-Suárez M, Rodriguez-Enriquez S, Loza-Tavera H, Moreno-Sánchez R (2001) Bioenerg Biomembr 33:289–301CrossRefGoogle Scholar
  8. Cadenas E, Merenyi G, Lind J (1989) FEBS Lett 253:235–238CrossRefGoogle Scholar
  9. Fernández V, Cornejo P, Tapia G, Videla LA (1997) Nitric Oxide 6:463–468CrossRefGoogle Scholar
  10. Gear ARL (1965) Biochem J 95:118–137Google Scholar
  11. Goglia F, Liverini G, Lanni A, Iossa S, Barletta A (1986) Comp Biochem Physiol 85B:869–873Google Scholar
  12. Gornall AG, Bardawill CJ, David MM (1949) J Biol Chem 177:751–766Google Scholar
  13. Gotoh N, Niki E (1992) Biochim Biophys Acta 1115:201–207Google Scholar
  14. Griffith OW (1980) Anal Biochem 106:207–212CrossRefGoogle Scholar
  15. Heath RL, Tappel AL (1976) Anal Biochem 76:184–191CrossRefGoogle Scholar
  16. Hyslop PA, Sklar LA (1984) Anal Biochem 141:280–286CrossRefGoogle Scholar
  17. Kuff EI, Schneider WC (1954) J Biol Chem 206:677–685Google Scholar
  18. Lang JK, Gohil K, Packer L (1986) Anal Biochem 157:106–116CrossRefGoogle Scholar
  19. Palmer G, Horgan DJ, Tisdale H, Singer TP, Beinert H (1968) J Biol Chem 243:844–847Google Scholar
  20. Peralta JG, Finocchietto PV, Converso D, Schöpfer F, Carreras MC, Poderoso JJ (2003) Am J Physiol 284:H2375–H2383Google Scholar
  21. Satav JG, Rajwade MS, Katyare SS, Netrawall MS, Fatterpaker P, Sreenivasan A (1973) Biochem J 134:687–695Google Scholar
  22. Schild L, Reinheckel T, Wiswedel I, Augustin W (1997) Biochem J 328:205–210Google Scholar
  23. Skulachev VP (1996) FEBS Lett 397:7–10CrossRefGoogle Scholar
  24. Turrens JF, Alexandre A, Lehninger AL (1985) Arch Biochem Biophys 237:408–414CrossRefGoogle Scholar
  25. Venditti P, Di Meo S, De Leo T (1996) Cell Physiol Biochem 6:283–295CrossRefGoogle Scholar
  26. Venditti P, Balestrieri M, Di Meo S, De Leo T (1997) J Endocrinol 155:151–157CrossRefGoogle Scholar
  27. Venditti P, Daniele MC, Masullo P, Di Meo S (1999) Cell Physiol Biochem 9:38–52CrossRefGoogle Scholar
  28. Venditti P, Masullo P, Di Meo S (2001) Int J Biochem Cell Biol 33:293–301CrossRefGoogle Scholar
  29. Venditti P, Costagliola IR, Di Meo S (2002) J Bioenerg Biomembr 34:115–125CrossRefGoogle Scholar
  30. Venditti P, De Rosa R, Di Meo S (2003a) Mol Cell Endocrinol 205:185–192CrossRefGoogle Scholar
  31. Venditti P, De Rosa R, Di Meo S (2003b) Free Radic Biol Med 35:485–494CrossRefGoogle Scholar
  32. Venditti P, De Rosa R, Di Meo S (2004a) Free Radic Biol Med 36:348–358CrossRefGoogle Scholar
  33. Venditti P, De Rosa R, Caldarone G, Di Meo S (2004b) Cell Mol Life Sci 61:3104–3116CrossRefGoogle Scholar
  34. Venditti P, Pamplona R, Portero-Otin M, De Rosa R, Di Meo S (2006) Arch Biochem Biophys 447:11–22CrossRefGoogle Scholar
  35. Venditti P, Bari A, Di Stefano L, Di Meo S (2007) Int J Biochem Cell Biol 39:1731–1742CrossRefGoogle Scholar
  36. Venditti P, Di Stefano L, Di Meo S (2010) J Exp Biol 213:2899–2911CrossRefGoogle Scholar
  37. Vercesi AE, Kowaltowski AJ, Grijalba MT, Meinicke AR, Castilho RF (1997) Biosc Rep 17:43–52CrossRefGoogle Scholar
  38. Zoccarato F, Cavallini L, Alexandre A (2004) J Biol Chem 279:4166–4174CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • P. Venditti
    • 1
  • G. Napolitano
    • 1
  • L. Di Stefano
    • 1
  • S. Di Meo
    • 1
  1. 1.Dipartimento delle Scienze Biologiche, Sezione di FisiologiaUniversità di Napoli “Federico II”NaplesItaly

Personalised recommendations