Advertisement

Journal of Bioenergetics and Biomembranes

, Volume 43, Issue 1, pp 81–88 | Cite as

Classical and alternative components of the mitochondrial respiratory chain in pathogenic fungi as potential therapeutic targets

  • Vicente de Paulo Martins
  • Taisa Magnani Dinamarco
  • Carlos Curti
  • Sérgio Akira Uyemura
Article

Abstract

The frequency of opportunistic fungal infection has increased drastically, mainly in patients who are immunocompromised due to organ transplant, leukemia or HIV infection. In spite of this, only a few classes of drugs with a limited array of targets, are available for antifungal therapy. Therefore, more specific and less toxic drugs with new molecular targets is desirable for the treatment of fungal infections. In this context, searching for differences between mitochondrial mammalian hosts and fungi in the classical and alternative components of the mitochondrial respiratory chain may provide new potential therapeutic targets for this purpose.

Keywords

Fungal Mitochondria Fungal infection Therapeutic targets Antifungal 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdrakhmanova A, Zickermann V, Bostina M, Radermacher M, Schagger H, Kerscher S, Brandt U (2004) Biochim Biophys Acta 1658:148–156CrossRefGoogle Scholar
  2. Abramson J, Riistama S, Larsson G, Jasaitis A, Svensson-Ek M, Laakkonen L, Puustinen A, Iwata S, Wikström M (2000) Nat Struct Biol 7:910–917CrossRefGoogle Scholar
  3. Ackrell BA, Kearney EB, Mayr M (1974) J Biol Chem 249:2021–2027Google Scholar
  4. Affourtit C, Albury MS, Crichton PG, Moore AL (2002) FEBS Lett 16:121–126CrossRefGoogle Scholar
  5. Albury MS, Elliott C, Moore AL (2009) Physiol Plant 137:316–327CrossRefGoogle Scholar
  6. Alston TA, Mela L, Bright HJ (1977) Proc Natl Acad Sci USA 74:3767–3771CrossRefGoogle Scholar
  7. Atteia A, van Lis R, van Hellemond JJ, Tielens AG, Martin W, Henze K (2004) Gene 14:143–148CrossRefGoogle Scholar
  8. Baggish AL, Hill DR (2002) Antimicrob Agents Chemother 46:1163–1173CrossRefGoogle Scholar
  9. Bandeira SCB, Nobrega MP (2008) Mycol Res 112:1414–1420CrossRefGoogle Scholar
  10. Barton V, Fisher N, Biagini GA, Ward SA, O’Neill PM (2010) Curr Opin Chem Biol 14:440–446CrossRefGoogle Scholar
  11. Bates DW, Su L, Yu DT, Chertow GM, Seger DL, Gomes DR, Dasbach EJ, Platt R (2001) Clin Infect Dis 32:689–693CrossRefGoogle Scholar
  12. Beconi, Sánchez RA, Boveris A (1983) Plant Sci Lett 32:125-132Google Scholar
  13. Bendall DS, Bonner WD (1971) Plant Physiol 47:236–245CrossRefGoogle Scholar
  14. Berry EA, Huang L, Lee D, Daldal F, Nagai K, Minagawa N (2010) Biochim Biophys Acta 1797:360–370CrossRefGoogle Scholar
  15. Berthold DA, Stenmark P (2003) Annu Rev Plant Biol 54:497–517CrossRefGoogle Scholar
  16. Berthold DA, Andersson ME, Nordlund P (2000) Biochim Biophys Acta 20:241–254Google Scholar
  17. Biagini GA, Viriyavejakul P, O'neill PM, Bray PG, Ward SA (2006) Antimicrob Agents Chemother 50:1841–1851CrossRefGoogle Scholar
  18. Bisson R, Vettore S, Aratri E, Sandona D (1997) EMBO J 16:739–749CrossRefGoogle Scholar
  19. Borecký J, Maia IG, Costa AD, Jezek P, Chaimovich H, de Andrade PB, Vercesi AE, Arruda P (2001) FEBS Lett 505:240–244CrossRefGoogle Scholar
  20. Brakhage AA, Liebmann B (2005) Med Mycol 43:75–82CrossRefGoogle Scholar
  21. Brown GC, Brand MD (1988) Biochem J 252:473–479Google Scholar
  22. Burke PV, Poyton RO (1998) J Exp Biol 201:1163–1175Google Scholar
  23. Cadenas E, Davies KJ (2000) Free Radical Biol Med 29:222–230CrossRefGoogle Scholar
  24. Camougrand N, Velours G, Guerin M (1986) Biol Cell 58:71–78Google Scholar
  25. Cardol P, Vanrobaeys F, Devreese B, Van Beeumen J, Matagne RF, Remacle C (2004) Biochim Biophys Acta 1658:212–224CrossRefGoogle Scholar
  26. Cardoso MA, Tambor JH, Nobrega FG (2007) Yeast 24:607–616CrossRefGoogle Scholar
  27. Carneiro P, Duarte M, Videira A (2007) J Mol Biol 368:1114–1121CrossRefGoogle Scholar
  28. Cavalheiro RA, Fortes F, Borecký J, Faustinoni VC, Schreiber AZ, Vercesi AE (2004) Braz J Med Biol Res 37:1455–1461CrossRefGoogle Scholar
  29. Cecchini G (2003) Annu Rev Biochem 72:77–109CrossRefGoogle Scholar
  30. Chae MS, Nargang FE (2009) Physiol Plant 137:407–418CrossRefGoogle Scholar
  31. Cheng S, Clancy CJ, Zhang Z, Hao B, Wang W, Iczkowski KA, Pfaller MA, Nguyen MH (2007) Cell Microbiol 9:492–501CrossRefGoogle Scholar
  32. Cooper CE, Brown GC (2008) J Bioenerg Biomembr 40:533–539CrossRefGoogle Scholar
  33. Crofts AR (2004) Annu Rev Physiol 66:689–733CrossRefGoogle Scholar
  34. Czarna M, Jarmuszkiewicz W (2005) FEBS Lett 579:3136–3140CrossRefGoogle Scholar
  35. Degli-Esposti M, de Vries S, Crimi M, Ghelli A, Patarnello T, Meyer A (1993) Biochim Biophys Acta 1143:243–271CrossRefGoogle Scholar
  36. Di Rago JP, Colson AM (1988) J Biol Chem 263:12564–12570Google Scholar
  37. Diaz F (2010) Biochim Biophys Acta 1802:100–110Google Scholar
  38. Dröse S, Brandt U (2008) J Biol Chem 283:21649–21654CrossRefGoogle Scholar
  39. Echtay KS (2007) Free Radic Biol Med 43:1351–1371CrossRefGoogle Scholar
  40. Fekete A, Emri T, Gyetvai A, Gazdag Z, Pesti M, Varga Z, Balla J, Cserháti C, Emody L, Gergely L, Pócsi I (2007) FEMS Yeast Res 7:834–847CrossRefGoogle Scholar
  41. Fekete A, Pócsi I, Emri T, Gyetvai A, Gazdag Z, Pesti M, Karányi Z, Majoros L, Gergely L, Pócsi I (2008) J Basic Microbiol 48:480–487CrossRefGoogle Scholar
  42. Fisher N, Meunier B (2008) FEMS Yeast Res 8:183–192CrossRefGoogle Scholar
  43. Fontanesi F, Soto IC, Barrientos A (2008) IUBMB Life 60:557–568CrossRefGoogle Scholar
  44. Forman HJ, Kennedy JA (1974) Biochem Biophys Res Commun 60:1044–1050CrossRefGoogle Scholar
  45. Fridell YW, Sanchez-Blanco A, Silvia BA, Helfand SL (2004) J Bioenerg Biomembr 36:219–228CrossRefGoogle Scholar
  46. Friedrich T, Böttcher B (2004) Biochim Biophys Acta 1608:1–9CrossRefGoogle Scholar
  47. Fry M, Webb E, Pudney M (1990) Comp Biochem Physiol B 96:775–782CrossRefGoogle Scholar
  48. Gabaldon T, Rainey D, Huynen MA (2005) J Mol Biol 348:857–870CrossRefGoogle Scholar
  49. Gier B, Schagger H, Ortwein C, Link TA, Hagen WR, Brandt U, Von Jagow G (1995) Eur J Biochem 227:296–302CrossRefGoogle Scholar
  50. Grigorieff N (1999) Curr Opin Struck Biol 9:476–483CrossRefGoogle Scholar
  51. Groll AH, Walsh TJ (2001) Clin Microbiol Infect Dis 7:8–24CrossRefGoogle Scholar
  52. Gurung B, Yu L, Yu CA (2008) J Biol Chem 283:28087–28094CrossRefGoogle Scholar
  53. Gutierrez-Cirlos EB, Merbitz-Zahradnik T, Trumpower BL (2004) J Biol Chem 279:8708–8714CrossRefGoogle Scholar
  54. Hatefi Y (1985) Annu Rev Biochem 54:1015–1069CrossRefGoogle Scholar
  55. Hirst J, Carroll J, Fearnley IM, Richard J, Shannon RJ, Walker JE (2003) Biochim Biophys Acta 1604:135–150CrossRefGoogle Scholar
  56. Huh WK, Kang SO (1999) J Bacteriol 181:4098–4102Google Scholar
  57. Huh WK, Kang SO (2001) Biochem J 1:595–604CrossRefGoogle Scholar
  58. Hunte C, Palsdottir H, Trumpower BL (2003) FEBS Lett 545:39–46CrossRefGoogle Scholar
  59. Hwang CS, Baek YU, Yim HS, Kang SO (2003) Yeast 20:929–941CrossRefGoogle Scholar
  60. Iwata S, Ostermeier C, Ludwig B, Michel H (1995) Nature 376:660–669CrossRefGoogle Scholar
  61. Jarmuszkiewicz W, Almeida AM, Sluse-Goffart CM, Sluse FE, Vercesi AE (1998) J Biol Chem 25:34882–34886CrossRefGoogle Scholar
  62. Jarmuszkiewicz W, Sluse-Goffart CM, Hryniewiecka L, Sluse F (1999) J Biol Chem 274:23198–23202CrossRefGoogle Scholar
  63. Jarmuszkiewicz W, Milani G, Fortes F, Schreiber AZ, Sluse FE, Vercesi AE (2000) FEBS Lett 467:145–149CrossRefGoogle Scholar
  64. Jarmuszkiewicz W, Behrendt M, Navet R, Sluse FE (2002) FEBS Lett 532:459–464CrossRefGoogle Scholar
  65. Jarmuszkiewicz W, Woyda-Ploszczyca A, Antos-Krzeminska N, Sluse FE (2010) Biochim Biophys Acta 1797:792–799CrossRefGoogle Scholar
  66. Johnson CH, Prigge JT, Warren AD, McEwen JE (2003) Yeast 20:381–388CrossRefGoogle Scholar
  67. Joseph-Horne T, Hollomon DW, Wood PM (2001) Biochim Biophys Acta 1504:179–195CrossRefGoogle Scholar
  68. Kerscher SJ, Okun JG, Brandt U (1999) J Cell Sci 112:2347–2354Google Scholar
  69. Kerscher SJ (2000) Biochim Biophys Acta 1459:274–283CrossRefGoogle Scholar
  70. Kessl JJ, Hill P, Lange BB, Meshnick SR, Meunier B, Trumpower BL (2004) J Biol Chem 279:2817–2824CrossRefGoogle Scholar
  71. Kessl JJ, Moskalev NK, Gribble GW, Meshnick NM, SR TBL (2007) Biochim Biophys Acta 1767:319–326CrossRefGoogle Scholar
  72. Kita K, Hirawake H, Miyadera H, Amino H, Takeo S (2002) Biochim Biophys Acta 1553:123–139CrossRefGoogle Scholar
  73. Klingenberg M (1988) Biochemistry 27:781–791CrossRefGoogle Scholar
  74. Klingenberg M (1990) Trends Biochem Sci 15:108–112CrossRefGoogle Scholar
  75. Kongkathip N, Pradidphol N, Hasitapan K, Grigg R, Kao WC, Hunte C, Fisher N, Warman AJ, Biagini GA, Kongsaeree P, Chuawong P, Kongkathip B (2010) J Med Chem 53:1211–1221CrossRefGoogle Scholar
  76. Kowaltowski AJ, Souza-Pinto NC, Castilho RF, Vercesi AE (2009) Free Radic Med Biol 47:333–343CrossRefGoogle Scholar
  77. Lambert AJ, Brand MD (2004) Biochem J 384:511–517Google Scholar
  78. Lambowitz AM, Slayman CW (1971) J Bacteriol 108:1087–1096Google Scholar
  79. Ledesma A, de Lacoba MG, Rial E (2002) Genome Biol 3:3015.1–3015.9CrossRefGoogle Scholar
  80. Lemesle-Meunier D (1989) Biochimie 71:195–247CrossRefGoogle Scholar
  81. Lemire BD, Oyedotun KS (2002) Biochim 1553:102–116Google Scholar
  82. Lenaz G, Genova ML (2010) Antioxid Redox Signal 12:961–1008CrossRefGoogle Scholar
  83. Lin SS, Kerscher S, Saleh A, Brandt U, Gross U, Bohne W (2008) Biochim Biophys Acta 1777:1455–1462CrossRefGoogle Scholar
  84. Loschen G, Azzi A, Richter C, Flohé L (1974) FEBS Lett 42:68–72CrossRefGoogle Scholar
  85. Ludwig B, Bender E, Arnold S, Hüttemann M, Lee I, Kadenbach B (2001) Chembiochem 2:392–403CrossRefGoogle Scholar
  86. Luévano-Martínez LA, Moyano E, de Lacoba MG, Rial E, Uribe-Carvajal S (2010) Biochim Biophys Acta 1797:81–88Google Scholar
  87. Magnani T, Soriani FM, Martins VP, Nascimento AM, Tudella VG, Curti C, Uyemura SA (2007) FEMS Microbiol Lett 271:230–238CrossRefGoogle Scholar
  88. Magnani T, Soriani FM, Martins VP, Policarpo AC, Sorgi CA, Faccioli LH, Curti C, Uyemura SA (2009) J Bioenerg Biomembr 40:631–636CrossRefGoogle Scholar
  89. Martins VP, Soriani FM, Magnani T, Tudella VG, Goldman GH, Curti C, Uyemura SA (2008) J Bioenerg Biomembr 40:297–305CrossRefGoogle Scholar
  90. Martins VP, Dinamarco TM, Soriani FM, Tudella VG, Oliveira SC, Goldman GH, Curti C, Uyemura SA (2010) Eukarta Cell Dec 23. doi: 10.1128/EC.00194-10
  91. Matsson M, Hederstedt L (2001) J Bioenerg Biomembr 33:99–105CrossRefGoogle Scholar
  92. Maxwell DP, Wang Y, McIntosh L (1999) Proc Natl Acad Sci USA 6:8271–8276CrossRefGoogle Scholar
  93. McDonald AE, Vanlerberghe GC (2006) Comp Biochem Physiol 1:357–364Google Scholar
  94. McDonald AE, Vanlerberghe GC, Staples JF (2009) J Exp Biol 212:2627–2634CrossRefGoogle Scholar
  95. Medoff G, Painter A, Kobayashi GS (1987) J Bacteriol 169:4055–4060Google Scholar
  96. Minagawa N, Yabu Y, Kita K, Nagai K, Ohta N, Meguro K, Sakajo S, Yoshimoto A (1996) Mol Biochem Parasitol 30:127–136CrossRefGoogle Scholar
  97. Missall TA, Lodge JK, McEwen JE (2004) Euk Cell 3:835–846CrossRefGoogle Scholar
  98. Mitchell P (1961) Nature 191:144–148CrossRefGoogle Scholar
  99. Mitchell P (1976) J Theor Biol 62:267–327CrossRefGoogle Scholar
  100. Mogi T, Matsushita K, Murase Y, Kawahara K, Miyoshi H, Ui H, Shiomi K, Omura S, Kita K (2009) FEMS Microbiol Lett 291:157–161CrossRefGoogle Scholar
  101. Moller IM (2001) Annu Rev Plant Physiol Plant Mol Biol 52:561–591CrossRefGoogle Scholar
  102. Moore AL, Albury MS (2008) Biochem Soc Trans 36:1022–1026CrossRefGoogle Scholar
  103. Moore AL, Siedow JN (1991) Biochim Biophys Acta 23:121–140Google Scholar
  104. Moore AL, Umbach AL, Siedow JN (1995) J Bioenerg Biomembr 27:367–377CrossRefGoogle Scholar
  105. Mowery PC, Steenkamp DJ, Ackrell AC, Singer TP, White GA (1977) Arch Biochem Biophys 178:495–506CrossRefGoogle Scholar
  106. Newmeyer DD, Ferguson-Miller S (2003) Cell 112:481–490CrossRefGoogle Scholar
  107. Nicholls DG, Rial E (1999) J Bioenerg Biomembr 31:399–418CrossRefGoogle Scholar
  108. Nihei C, Fukai Y, Kawai K, Osanai A, Yabu Y, Suzuki T, Ohta N, Minagawa N, Nagai K, Kita K (2003) FEBS Lett 538:35–40CrossRefGoogle Scholar
  109. Oyedotun KS, Lemire BD (1999) FEBS Lett 442:203–207CrossRefGoogle Scholar
  110. Pagliarini DJ, Dixon JE (2006) Trends Biochem Sci 31:26–34CrossRefGoogle Scholar
  111. Petrikkos G, Skiada A (2007) Int J Antimicrob Agents 30:108–117CrossRefGoogle Scholar
  112. Rasmusson AG, Geisler DA, Møller IM (2008) Mitochondrion 8:47–60CrossRefGoogle Scholar
  113. Rhoads DM, Subbaiah CC (2007) Mitochondrion 7:177–194CrossRefGoogle Scholar
  114. Richardson M, Lass-Flörl C (2008) Clin Microbiol Infect 14:5–24CrossRefGoogle Scholar
  115. Ricquier D, Bouillaud F (2000) Biochem J 345:161–179CrossRefGoogle Scholar
  116. Ricquier D, Kader JC (1976) Biochem Biophys Res Commun 73:577–583CrossRefGoogle Scholar
  117. Rieske JS (1976) Biochim Biophys Acta 456:195–247Google Scholar
  118. Roberts CW, Roberts F, Henriquez FL, Akiyoshi D, Samuel BU, Richards TA, Milhous W, Kyle D, McIntosh L, Hill GC, Chaudhuri M, Tzipori S, McLeod R (2004) Int J Parasitol 34:297–308CrossRefGoogle Scholar
  119. Rosenfeld E, Beauvoit B (2003) Yeast 20:1115–1144CrossRefGoogle Scholar
  120. Rutter J, Winge DR, Schiffman JD (2010) Mitochondrion 10:393–401CrossRefGoogle Scholar
  121. Ruy F, Vercesi AE, Kowaltowski AJ (2006) J Bioenerg Biomembr 38:129–135CrossRefGoogle Scholar
  122. Saliola M, Bartoccioni PC, De Maria I, Lodi T, Falcone C (2004) Euk Cell 3:589–597CrossRefGoogle Scholar
  123. Schleiff E, McBride H (2000) J Cell Sci 113:2267–2272Google Scholar
  124. Schultz BE, Sunney I, Chan SI (2001) Annu Rev Biophys Biomol Struct 30:23–65CrossRefGoogle Scholar
  125. Shao P, Huang L, Hsueh P (2007) Int J Antimicrob Agents 30:487–495CrossRefGoogle Scholar
  126. Siedow JN, Girvin ME (1980) Plant Physiol 65:669–674CrossRefGoogle Scholar
  127. Siedow JN, Umbach AL, Moore AL (1995) FEBS Lett 27:10–14CrossRefGoogle Scholar
  128. Skulachev VP (1991) FEBS Lett 294:158–162CrossRefGoogle Scholar
  129. Skulachev VP (2006) Apoptosis 11:473–485CrossRefGoogle Scholar
  130. Slater EC (1973) Biochim Biophys Acta 301:129–154Google Scholar
  131. Small WC, Mcalister-Henn J (1998) Biochim Biophys Acta 180:4051–4055Google Scholar
  132. Stenmark P, Nordlund P (2003) FEBS Lett 25:189–192CrossRefGoogle Scholar
  133. Suzuki T, Hashimoto T, Yabu Y, Majiwa PA, Ohshima S, Suzuki S, Lu S, Hato M, Kido Y, Sakamoto K, Nakamura K, Kita K, Ohta N (2005) J Eukaryot Microbiol 52:374–381CrossRefGoogle Scholar
  134. Svensson AS, Johansson FI, Moller IM, Rasmusson AG (2002) FEBS Lett 517:79–82CrossRefGoogle Scholar
  135. Tambor JH, Guedes RF, Nobrega MP, Nobrega FG (2006) Curr Genet 49:302–308CrossRefGoogle Scholar
  136. Tanton LL, Nargang CE, Kessler KE, Li Q, Nargang FE (2003) Fungal Genet Biol 39:176–190CrossRefGoogle Scholar
  137. Tarrio N, Becerra M, Cerdan ME, Gonzalez SMI (2006) FEMS Yeast Res 6:371–380CrossRefGoogle Scholar
  138. Tiranti V, Hoertnagel K, Carrozzo R, Galimberti C, Munaro M, Granatiero M, Zelante L, Gasparini P, Marzella R, Rocchi M, Bayona-Bafaluy MP, Enriquez JA, Uziel G, Bertini E, Dionisi-Vici C, Franco B, Meitinger T, Zeviani M (1998) Am J Hum Genet 63:1609–1621CrossRefGoogle Scholar
  139. Tischner R, Planchet E, Kaiser WM (2004) FEBS Lett 576:151–155CrossRefGoogle Scholar
  140. Tudella VG, Curti C, Soriani FM, Santos AC, Uyemura SA (2004) Int J Biochem Cell Biol 36:162–172CrossRefGoogle Scholar
  141. Turrens JF (2003) J Physiol 552:335–344CrossRefGoogle Scholar
  142. Turrens JF, Alexandre A, Lehninger AL (1985) Arch Biochem Biophys 237:408–414CrossRefGoogle Scholar
  143. Umbach AL, Siedow JN (2000) Arch Biochem Biophys 15:234–245CrossRefGoogle Scholar
  144. Umbach AL, González-Meler MA, Sweet CR, Siedow JN (2002) Biochim Biophys Acta 1554:118–128CrossRefGoogle Scholar
  145. Uyemura SA, Luo S, Moreno SN, Docampo R (2000) J Biol Chem 275:9709–9715CrossRefGoogle Scholar
  146. Vaidya AB, Mather MW (2000) Drug Resist Update 3:283–287CrossRefGoogle Scholar
  147. Vázquez-Acevedo M, Antaramian A, Corona N, Gonzalez-Halphen D (1993) J Bioenerg Biomembranes 25:401–410CrossRefGoogle Scholar
  148. Veiga A, Arrabaca JD, Loureiro-Dias MC (2003) FEMS Yeast Res 3:239–245CrossRefGoogle Scholar
  149. Vercesi AE, Martins IS, Silva MAP, Leite HMF, Cuccovia IM, Chaimovich H (1995) Nature 375:24CrossRefGoogle Scholar
  150. Vercesi AE, Rodrigues CO, Uyemura SA, Zhong L, Moreno SN (1998) J Biol Chem 273:31040–31047CrossRefGoogle Scholar
  151. Vercesi AE, Borecky J, Maia IG, Arruda P, Cuccovia IM, Chaimovich H (2006) Annu Rev Plant Biol 57:383–404CrossRefGoogle Scholar
  152. Vianello A, Braidot E, Petrussa E, Macri F (1997) Plant Cell Physiol 38:1368–1374Google Scholar
  153. Videira A (1998) Biochim Biophys Acta 1364:89–100CrossRefGoogle Scholar
  154. Videira A, Duarte M (2001) J Bioenerg Biomembranes 33:197–203CrossRefGoogle Scholar
  155. Videira A, Werner S (1989) Eur J Biochem 181:493–502CrossRefGoogle Scholar
  156. Walker DJ, Meshnick SR (1998) Drug Resist Updat 1:201–204CrossRefGoogle Scholar
  157. Wallace DC (1992) Science 256:628–632CrossRefGoogle Scholar
  158. Wallace DC, Weiwei Fan W, Procaccio V (2010) Annu Rev Pathol Mech Dis 5:297–348CrossRefGoogle Scholar
  159. Walsh TJ, Groll AH (1999) Transpl Infect Dis 1:247–261CrossRefGoogle Scholar
  160. Weidner U, Geier S, Ptock A, Friedrich T, Leif H, Weiss H (1993) J Mol Biol 233:109–122CrossRefGoogle Scholar
  161. Weiss H, Friedrich T, Hofhaus G, Preis D (1991) Eur J Biochem 197:563–576CrossRefGoogle Scholar
  162. Wikström MKF (1984) FEBS Lett 169:300–304CrossRefGoogle Scholar
  163. Williams BA, Elliot C, Burri L, Kido Y, Kita K, Moore AL, Keeling PJ (2010) PLoS Pathog 12:e1000761CrossRefGoogle Scholar
  164. Woo PC, Zhen H, Cai JJ, Yu J, Lau SK, Wang J, Teng JL, Wong SS, Tse RH, Chen R, Yang H, Liu B, Yuen KY (2003) FEBS Lett 555:469–477CrossRefGoogle Scholar
  165. Xu X, Matsuno-Yagi A, Yagi T (1993) Biochemistry 32:968–981CrossRefGoogle Scholar
  166. Yabu Y, Minagawa N, Kita K, Nagai K, Honma M, Sakajo S, Koide T, Ohta N, Yoshimoto A (1998) Parasitol Int 47:131–137CrossRefGoogle Scholar
  167. Yabu Y, Yoshida A, Suzuki T, Nihei C, Kawai K, Minagawa N, Hosokawa T, Nagai K, Kita K, Ohta N (2003) Parasitol Int 52:155–164CrossRefGoogle Scholar
  168. Yamashita T, Nakamaru-Ogiso E, Miyoshi H, Matsuno-Yagi A, Yagi T (2007) J Biol Chem 282:6012–6020CrossRefGoogle Scholar
  169. Yu CA, Xia D, Kim H, Deisenhofer J, Zhang L, Kachurin AM, Yu L (1998) Biochim Biophys Acta 1365:151–158CrossRefGoogle Scholar
  170. Yukioka H, Inagaki S, Tanaka R, Katoh K, Miki N, Mizutani A, Masuko M (1998) Biochim Biophys Acta 8:161–169Google Scholar
  171. Zara V, Conte L, Trumpower BL (2009) Biochim Biophys Acta 1793:89–96CrossRefGoogle Scholar
  172. Zhang H, Chobot SE, Osyczka A, Wraight CA, Dutton PL, Moser CC (2008) J Bioenerg Biomembranes 40:493–499CrossRefGoogle Scholar
  173. Zhu Z, Yao J, Johns T, Fu K, De Bie I, Macmillan C, Cuthbert AP, Newbold RF, Wang J, Chevrette M, Brown GK, Brown RM, Shoubridge EA (1998) Nat Genet 20:337–343CrossRefGoogle Scholar
  174. Zuccato C, Valenza M, Cattaneo E (2010) Physiol Rev 90:905–981CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Vicente de Paulo Martins
    • 1
  • Taisa Magnani Dinamarco
    • 1
  • Carlos Curti
    • 2
  • Sérgio Akira Uyemura
    • 1
  1. 1.Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão PretoUniversidade de São PauloRibeirão PretoBrazil
  2. 2.Departamento de Física e Química. Faculdade de Ciências Farmacêuticas de Ribeirão PretoUniversidade de São PauloRibeirão PretoBrazil

Personalised recommendations