Skip to main content
Log in

Functioning of the mitochondrial ATP-dependent potassium channel in rats varying in their resistance to hypoxia. Involvement of the channel in the process of animal’s adaptation to hypoxia

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

The mechanism of tissue protection from ischemic damage by activation of the mitochondrial ATP-dependent K+ channel (mitoKATP) remains unexplored. In this work, we have measured, using various approaches, the ATP-dependent mitochondrial K+ transport in rats that differed in their resistance to hypoxia. The transport was found to be faster in the hypoxia-resistant rats as compared to that in the hypoxia-sensitive animals. Adaptation of animals to the intermittent normobaric hypoxia increased the rate of transport. At the same time, the intramitochondrial concentration of K+ in the hypoxia-sensitive rats was higher than that in the resistant and adapted animals. This indicates that adaptation to hypoxia stimulates not only the influx of potassium into mitochondria, but also K+/H+ exchange. When mitoKATP was blocked, the rate of the mitochondrial H2O2 production was found to be significantly higher in the hypoxia-resistant rats than that in the hypoxia-sensitive animals. The natural flavonoid-containing adaptogen Extralife, which has an evident antihypoxic effect, increased the rate of the mitochondrial ATP-dependent K+ transport in vitro and increased the in vivo tolerance of hypoxia-sensitive rats to acute hypoxia 5-fold. The involvement of the mitochondrial K+ transport in the mechanism of cell adaptation to hypoxia is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Akao M, O’Rouke B, Kusuoka H, Teshima Y, Jones S, Marban E (2003) Circ Res 92:195–202

    Article  CAS  Google Scholar 

  • Asemu G, Papousek F, Ostadal B, Koler F (1999) J Mol Cell Cardiol 31:1821–1831

    Article  CAS  Google Scholar 

  • Baranova OV, Skarga YY, Negoda AE, Mironova GD (2000) Biochemistry (Moscow) 65:218–222

    CAS  Google Scholar 

  • Belosludtsev KN, Belosludtseva NV, Mironova GD (2005) Biochemistry (Moscow) 70:815–821

    Article  CAS  Google Scholar 

  • Belosludtsev KN, Saris N-EL, Belosludtseva NV, Trudovishnikov AS, Lukyanova LD, Mironova GD (2009) J Bioenerg Biomembr 41:395–401

    Article  CAS  Google Scholar 

  • Berezovsky (1978) In: Berezovsky (ed) Hypoxia: Individual sensitivity and reactivity. Naukova Dumka, Kiev

    Google Scholar 

  • Costa AD, Jakob R, Costa CL, Andrukhiv K, West IC, Garlid KD (2006) J Biol Chem 281:20801–20808

    Article  CAS  Google Scholar 

  • Eells JT, Henry MM, Gross GL, Backer JE (2003) Circ Res 87:915–921

    Google Scholar 

  • Ferranti RF, de Silva MM, Kowaltowski AJ (2003) FEBS Lett 536:51–55

    Article  CAS  Google Scholar 

  • Garlid KD, Paucek P (2003) Biochim Biophys Acta 1606:23–41

    Article  CAS  Google Scholar 

  • Garlid KD, Paucek P, Yarov-Yarovoy V, Murray HN, Darbenzio RB, D’Alonzo AJ, Lodg NJ, Smith MA, Grover GJ (1997) Circ Res 81:1072–1082

    CAS  Google Scholar 

  • Grigoriev S, Skarga YY, Mironova G, Marinov B (1999) Biochim Biophys Acta 1410(1):91–96

    Article  CAS  Google Scholar 

  • Jaburek M, Yarov-Yarovoy V, Paucek P, Garlid KD (1998) J Biol Chem 273:13578–13582

    CAS  Google Scholar 

  • Kolàř F, Oštàdal B (2004) Physiol Res 53(1):S3–S13

    Google Scholar 

  • Korshunov SS, Skulachev VP, Starkov AA (1997) FEBS Lett 416:15–18

    Article  CAS  Google Scholar 

  • Krylova IB, Kachaeva EV, Rodionova OM, Evdokimova NR, Balina MI, Mironova GD, Sapronov NS (2006) Exp Gerontol 41:697–703

    Article  CAS  Google Scholar 

  • Li Y, Johnson N, Capano M, Edwards M, Crompton M (2004) Biochem J 383:101–109

    Article  CAS  Google Scholar 

  • Lu C, Halvorsen SW (1997) FEBS Lett 412:121–125

    Article  CAS  Google Scholar 

  • Lukyanova LD (2004) In: Adaptation biology and medicine. Hargens A, Takeda N, Singal PK (eds), 4:11–22

  • Lukyanova LD, Dudchenko AM, Chernobaeva GN, Belousova VV, Vlasova IG (1993) Bull Exp Biol Med 115(3):251–254

    Article  Google Scholar 

  • Lukyanova LD, Germanova EL, Lysko AI (2007) Vestn RAMN 2:55–62

    Google Scholar 

  • Lukyanova LD, Dudchenko AM, Germanova EL, Tsybina TA, Kapaladse RA, Ehrenbourg IV, Tkatchouk EN (2009a) In: Xi L, Serebrovskaya T (eds) Intermitten Hypoxia: from molecular mechanisms to clinical applications. Nova Science, USA, pp 423–450

    Google Scholar 

  • Lukyanova LD, Germanova EL, Kopaladze RA (2009b) Bull Exp Biol Med 147(1):400–404

    Article  CAS  Google Scholar 

  • Mironova GD, Skarga YY, Grigoriev SM, Negoda AE, Kolomytkin OV, Marinov BS (1999) J Bioenerg Biomembr 31:159–163

    Article  CAS  Google Scholar 

  • Mironova G, Negoda A, Marinov B, Paucek P, Costa A, Grigoriev S, Skarga Yu, Garlid K (2004) J Biol Chem 279(31):32562–32568

    Article  CAS  Google Scholar 

  • Mironova GD, Shigaeva MI, Belosludtseva NV, Gritsenko EN, Belosludtsev KN, Germanova EL, Lukyanova LD (2008) Bull Exp Biol Med 146(2):229–33

    Article  CAS  Google Scholar 

  • Neckar J, Szarszoi O, Koten L, Papousek F, Ostadal B, Grover G, Koler F (2002) Cardiovasc Res 55:567–575

    Article  CAS  Google Scholar 

  • Neckar J, Markova I, Novak F, Novakova O, Szarszoi O, Ostadal B, Koler F (2005) Am J Physiol Heart Circ Physiol 288:H1566–H1572

    Article  CAS  Google Scholar 

  • O’Rourke B (2004) Circ Res 94:420–432

    Article  Google Scholar 

  • Portenhauser R, Schafer G, Trolp R (1971) Biochem Pharmacol 20:2623–2632

    Article  CAS  Google Scholar 

  • Sato T, O’Rourke B, Marban E (1998) Circ Res 83:110–114

    CAS  Google Scholar 

  • Schönfeld P, Gerke S, Bohnensack R, Wojtczak L (2003) Biochim Biophys Acta 1604:125–133

    Article  Google Scholar 

  • Shalbuyeva N, Brustovetsky T, Bolshakov A, Brustovetsky N (2006) J Biol Chem 281:37547–37558

    Article  CAS  Google Scholar 

  • Tsai C, Su S, Chou T, Lee T (2002) J Pharmacol Exp Ther 301:234–240

    Article  CAS  Google Scholar 

  • Vanden Hoek TL, Becker LB, Shao Z, Li C, Schumacker HT (1998) J Biol Chem 273:18092–18098

    Article  CAS  Google Scholar 

  • Zhu HF, Dong JW, Zhu WZ, Ding HL, Zhou ZN (2003) Life Sci 1275–1287

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Galina D. Mironova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mironova, G.D., Shigaeva, M.I., Gritsenko, E.N. et al. Functioning of the mitochondrial ATP-dependent potassium channel in rats varying in their resistance to hypoxia. Involvement of the channel in the process of animal’s adaptation to hypoxia. J Bioenerg Biomembr 42, 473–481 (2010). https://doi.org/10.1007/s10863-010-9316-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-010-9316-5

Keywords

Navigation