Skip to main content
Log in

Characterization of two cytochrome b 6 proteins from the cyanobacterium Gloeobacter violaceus PCC 7421

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

In the genome of the untypical cyanobacterium Gloeobacter violaceus PCC 7421 two potential cytochrome b 6 proteins PetB1 and PetB2 are encoded. Such a situation has not been observed in cyanobacteria, algae and higher plants before, and both proteins are not characterized at all yet. Here, we show that both apo-proteins bind heme with high affinity and the spectroscopic characteristics of both holo-proteins are distinctive for cytochrome b 6 proteins. However, while in PetB2 one histidine residue, which corresponds to H100 and serves as an axial ligand for heme b H in PetB1, is mutated, both PetB proteins bind two heme molecules with different midpoint potentials. To recreate the canonical heme b H binding cavity in PetB2 we introduced a histidine residue at the position corresponding to H100 in PetB1 and subsequently characterized the generated protein variant. The presented data indicate that two bona fide cytochrome b 6 proteins are encoded in Gloeobacter violaceus. Furthermore, the two petB genes of Gloeobacter violaceus are each organized in an operon together with a petD gene. Potential causes and consequences of the petB and petD gene heterogeneity are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Baniulis D, Yamashita E, Whitelegge JP, Zatsman AI, Hendrich MP, Hasan SS, Ryan CM, Cramer WA (2009) J Biol Chem 284:9861–9869

    Article  CAS  Google Scholar 

  • Barrick D (1994) Biochemistry 33:6546–6554

    Article  CAS  Google Scholar 

  • Cramer WA, Zhang H (2006) Biochim Biophys Acta 1757:339–345

    Article  CAS  Google Scholar 

  • Cramer WA, Zhang H, Yan J, Kurisu G, Smith JL (2006) Annu Rev Biochem 75:769–790

    Article  CAS  Google Scholar 

  • Crofts AR, Meinhardt SW, Jones KR, Snozzi M (1983) Biochimica et Biophysica Acta (BBA)—Bioenergetics 723:202–218

    Article  CAS  Google Scholar 

  • Dreher C, Prodöhl A, Weber M, Schneider D (2007) FEBS Lett 581:2647–2651

    Article  CAS  Google Scholar 

  • Dreher C, Prodöhl A, Hielscher R, Hellwig P, Schneider D (2008) J Mol Biol 382:1057–1065

    Article  CAS  Google Scholar 

  • Finazzi G (2002) Biochemistry 41:7475–7482

    Article  CAS  Google Scholar 

  • Harbury HA, Cronin JR, Fanger MW, Hettinger TP, Murphy AJ, Myer YP, Vinogradov SN (1965) Proc Natl Acad Sci USA 54:1658–1664

    Article  CAS  Google Scholar 

  • Hart SE, Schlarb-Ridley BG, Bendall DS, Howe CJ (2005) Biochem Soc Trans 33:832–835

    Article  CAS  Google Scholar 

  • Hellwig P, Behr J, Ostermeier C, Richter OM, Pfitzner U, Odenwald A, Ludwig B, Michel H, Mäntele W (1998) Biochemistry 37:7390–7399

    Article  CAS  Google Scholar 

  • Kallas T (1994) In the molecular biology of cyanobacteria: the cytochrome b6f complex. In: Bryant DA (ed). Kluwer Academic Publishers, Dordrecht, pp 259–317

  • Kallas T, Spiller S, Malkin R (1988) J Biol Chem 263:14334–14342

    CAS  Google Scholar 

  • Kamiya N, Okimoto Y, Ding Z, Ohtomo H, Shimizu M, Kitayama A, Morii H, Nagamune T (2001) Protein Eng 14:415–419

    Article  CAS  Google Scholar 

  • Kuras R, de Vitry C, Choquet Y, Girard-Bascou J, Culler D, Büschlen S, Merchant S, Wollman FA (1997) J Biol Chem 272:32427–32435

    Article  CAS  Google Scholar 

  • Kurisu G, Zhang H, Smith JL, Cramer WA (2003) Science 302:1009–1014

    Article  CAS  Google Scholar 

  • Mitchell P (1975) FEBS Lett 59:137–139

    Article  CAS  Google Scholar 

  • Moss D, Nabedryk E, Breton J, Mäntele W (1990) Eur J Biochem 187:565–572

    Article  CAS  Google Scholar 

  • Nakamura Y, Kaneko T, Sato S, Mimuro M, Miyashita H, Tsuchiya T, Sasamoto S, Watanabe A, Kawashima K, Kishida Y, Kiyokawa C, Kohara M, Matsumoto M, Matsuno A, Nakazaki N, Shimpo S, Takeuchi C, Yamada M, Tabata S (2003) DNA Res 10:181–201

    Article  CAS  Google Scholar 

  • Newmyer SL, de Montellano PR (1996) J Biol Chem 271:14891–14896

    Article  CAS  Google Scholar 

  • Ozols J, Strittmatter P (1964) J Biol Chem 239:1018–1023

    CAS  Google Scholar 

  • Pond AE, Roach MP, Thomas MR, Boxer SG, Dawson JH (2000) Inorg Chem 39:6061–6066

    Article  CAS  Google Scholar 

  • Prodöhl A, Volkmer T, Finger C, Schneider D (2005) J Mol Biol 350:744–756

    Article  Google Scholar 

  • Prodöhl A, Dreher C, Hielscher R, Hellwig P, Schneider D (2007a) Protein Expr Purif 56:279–285

    Article  Google Scholar 

  • Prodöhl A, Weber M, Dreher C, Schneider D (2007b) Biochimie 89:1433–1437

    Article  Google Scholar 

  • Rippka R, Waterbury J, Cohen-Bazire G (1974) Arch Microbiol 100:419–436

    Article  CAS  Google Scholar 

  • Saint-Marcoux D, Wollman F-A, de Vitry C (2009) J Cell Biol 185:1195–1207

    Article  CAS  Google Scholar 

  • Scherer S (1990) Trends Biochem Sci 15:458–462

    Article  Google Scholar 

  • Schmetterer G (1994) In: Bryant DA (ed) The molecular biology of cyanobacteria: cyanobacterial respiration. Kluwer, Dordrecht, pp 409–435

    Google Scholar 

  • Schneider D, Schmidt CL (2005) Biochim Biophys Acta 1710:1–12

    CAS  Google Scholar 

  • Schneider D, Berry S, Rich P, Seidler A, Rögner M (2001) J Biol Chem 276:16780–16785

    Article  CAS  Google Scholar 

  • Schneider D, Skrzypczak S, Anemüller S, Schmidt CL, Seidler A, Rögner M (2002) J Biol Chem 277:10949–10954

    Article  CAS  Google Scholar 

  • Schneider D, Berry S, Volkmer T, Seidler A, Rögner M (2004) J Biol Chem 279:39383–39388

    Article  CAS  Google Scholar 

  • Schneider D, Volkmer T, Rögner M (2007) Res Microbiol 158:45–50

    Article  CAS  Google Scholar 

  • Schünemann V, Trautwein AX, Illerhaus J, Haehnel W (1999) Biochemistry 38:8981–8991

    Article  Google Scholar 

  • Soriano GM, Ponamarev MV, Carrell CJ, Xia D, Smith JL, Cramer WA (1999) J Bioenerg Biomembr 31:201–213

    Article  CAS  Google Scholar 

  • Stroebel D, Choquet Y, Popot JL, Picot D (2003) Nature 426:413–418

    Article  CAS  Google Scholar 

  • Tsunoyama Y, Bernat G, Dyczmons NG, Schneider D, Rögner M (2009) J Biol Chem 284:27875–27883

    Article  CAS  Google Scholar 

  • Volkmer T, Becker C, Prodöhl A, Finger C, Schneider D (2006) Biochim Biophys Acta 1758:1815–1822

    Article  CAS  Google Scholar 

  • Widger WR, Cramer WA, Herrmann RG, Trebst A (1984) Proc Natl Acad Sci USA 81:674–678

    Article  CAS  Google Scholar 

  • Yamashita E, Zhang H, Cramer WA (2007) J Mol Biol 370:39–52

    Article  CAS  Google Scholar 

  • Zhang H, Primak A, Cape J, Bowman MK, Kramer DM, Cramer WA (2004) Biochemistry 43:16329–16336

    Article  CAS  Google Scholar 

  • Zito F, Finazzi G, Joliot P, Wollman FA (1998) Biochemistry 37:10395–10403

    Article  CAS  Google Scholar 

  • Zito F, Finazzi G, Delosme R, Nitschke W, Picot D, Wollman F-A (1999) EMBO J 18:2961–2969

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Schneider.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dreher, C., Hielscher, R., Prodöhl, A. et al. Characterization of two cytochrome b 6 proteins from the cyanobacterium Gloeobacter violaceus PCC 7421. J Bioenerg Biomembr 42, 517–526 (2010). https://doi.org/10.1007/s10863-010-9279-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-010-9279-6

Keywords

Navigation