Journal of Bioenergetics and Biomembranes

, Volume 42, Issue 2, pp 125–133 | Cite as

Maturation of a eukaryotic cytochrome c in the cytoplasm of Escherichia coli without the assistance by a dedicated biogenesis apparatus

  • Katalin Tenger
  • Petro Khoroshyy
  • Gábor Rákhely
  • László Zimányi


Maturation of c-type cytochromes involves the covalent and stereospecific enzymatic attachment of a heme b via thioether linkages to two conserved cysteines within apocytochromes. Horse cytochrome c is readily matured into its native holoform in the cytoplasm of E. coli when co-expressed with yeast cytochrome c heme lyase. Here we report the low yield formation of holocytochrome with covalently attached heme also in the absence of heme lyase. This is the first demonstration of in vivo maturation of a eukaryotic cytochrome c in a prokaryotic cytoplasm without the assistance by a dedicated enzymatic maturation system. The assembled cytochrome c can be oxidized by cytochrome c oxidase, indicating the formation of a functional protein. The absorption spectrum is typical of a low spin, six coordinated c-type heme. Nevertheless, minor spectral differences relative to the native cytochrome c, deviation of the midpoint reduction potential and slightly altered kinetic parameters of the interaction with cytochrome c oxidase emphasize the importance of cytochrome c heme lyase in folding cytochrome c into its native conformation.


Apocytochrome Holocytochrome Heme Heme lyase Spontaneous maturation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Angstrom J, Moore GR, Williams RJP (1982) Biochim Biophys Acta 703(1):87–94Google Scholar
  2. Ausubel FM, Brent R, Kingston R, Moore DD, Seidman JG, Smith JA, Struhl, K (1996) Current protocols in molecular biology.Google Scholar
  3. Barker PD, Ferguson SJ (1999) Structure 7(12):R281–R290CrossRefGoogle Scholar
  4. Bartsch RG (1971) Methods Enzymol. 23:344–363.CrossRefGoogle Scholar
  5. Bernard DG, Quevillon-Cheruel S, Merchant S, Guiard B, Hamel PP (2005) J Biol Chem 280(48):39852–39859CrossRefGoogle Scholar
  6. Bowman SE, Bren KL (2008) Nat Prod Rep 25(6):1118–1130CrossRefGoogle Scholar
  7. Craig DB, Nichols ER (2006) J Chem Educ 83(9):1325–1326CrossRefGoogle Scholar
  8. Daltrop O, Ferguson SJ (2003) J Biol Chem 278(7):4404–4409CrossRefGoogle Scholar
  9. Daltrop O, Allen JW, Willis AC, Ferguson SJ (2002) Proc Natl Acad Sci USA 99(12):7872–7876CrossRefGoogle Scholar
  10. Dolgikh DA, Latypov RF, Abdullaev ZK, Kolov V, Roder H, Kirpichnikov MP (1998) Bioorg Khim 24(10):756–759Google Scholar
  11. Giege P, Grienenberger JM, Bonnard G (2008) Mitochondrion 8(1):61–73CrossRefGoogle Scholar
  12. Greenwood C, Wilson MT (1971) Eur J Biochem 22(1):5–10CrossRefGoogle Scholar
  13. Guzman LM, Belin D, Carson MJ, Beckwith J (1995) J Bacteriol 177(14):4121–4130Google Scholar
  14. Hamel P, Corvest V, Giege P, Bonnard G (2009) Biochim Biophys Acta 1793(1):125–138CrossRefGoogle Scholar
  15. Harrington JP, Carrier TL (1985) Int J Biochem 17(1):119–122CrossRefGoogle Scholar
  16. King TE (1967) Methods Enzymol. 10:202–208CrossRefGoogle Scholar
  17. Kranz RG, Richard-Fogal C, Taylor JS, Frawley ER (2009) Microbiol Mol Biol Rev 73(3):510–528CrossRefGoogle Scholar
  18. Levantino M, Huang Q, Cupane A, Laberge M, Hagarman A, Schweitzer-Stenner R (2005) J Chem Phys 123(5):054508CrossRefGoogle Scholar
  19. Margoliash E, Lustgarten J (1962) J Biol Chem 237(11):3397–3405Google Scholar
  20. Margoliash E, Schejter A (1966) Adv Protein Chem 21:113–286CrossRefGoogle Scholar
  21. Patel CN, Lind MC, Pielak GJ (2001) Protein Expr Purif 22(2):220–224CrossRefGoogle Scholar
  22. Pollock WB, Rosell FI, Twitchett MB, Dumont ME, Mauk AG (1998) Biochemistry 37(17):6124–6131CrossRefGoogle Scholar
  23. Rumbley JN, Hoang L, Englander SW (2002) Biochemistry 41(47):13894–13901CrossRefGoogle Scholar
  24. Sanbongi Y, Yang JH, Igarashi Y, Kodama T (1991) Eur J Biochem 198(1):7–12CrossRefGoogle Scholar
  25. Sanders C, Lill H (2000) Biochim Biophys Acta 1459(1):131–138CrossRefGoogle Scholar
  26. Schweitzer-Stenner R, Levantino M, Cupane A, Wallace C, Laberge M, Huang Q (2006) J Phys Chem B 110(24):12155–12161CrossRefGoogle Scholar
  27. Sinha N, Ferguson SJ (1998) FEMS Microbiol Lett 161(1):1–6CrossRefGoogle Scholar
  28. Spilotros A, Levantino M, Cupane A (2010) Biophys Chem 147(1–2):8–12CrossRefGoogle Scholar
  29. Tenger K, Khoroshyy P, Leitgeb B, Rákhely G, Borovok N, Kotlyar A, Dolgikh DA, Zimányi L (2005) J Chem Inf Model 45(6):1520–1526CrossRefGoogle Scholar
  30. Tenger K, Khoroshyy P, Kovács KL, Zimányi L, Rákhely G (2007) Acta Biol Hung 58:23–35CrossRefGoogle Scholar
  31. Thony-Meyer L (1997) Microbiol Mol Biol Rev 61(3):337–376Google Scholar
  32. Thony-Meyer L (2002) Biochem Soc Trans 30(4):633–638CrossRefGoogle Scholar
  33. Thony-Meyer L, Fischer F, Kunzler P, Ritz D, Hennecke H (1995) J Bacteriol 177(15):4321–4326Google Scholar
  34. Tomlinson EJ, Ferguson SJ (2000) J Biol Chem 275(42):32530–32534CrossRefGoogle Scholar
  35. Vargas C, McEwan AG, Downie JA (1993) Anal Biochem 209(2):323–326CrossRefGoogle Scholar
  36. Yonetani T (1967) Methods Enzymol. 10:332–335CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Katalin Tenger
    • 1
  • Petro Khoroshyy
    • 1
  • Gábor Rákhely
    • 1
    • 2
  • László Zimányi
    • 1
  1. 1.Institute of BiophysicsBiological Research Center of the Hungarian Academy of SciencesSzegedHungary
  2. 2.Department of BiotechnologyUniversity of SzegedSzegedHungary

Personalised recommendations