Journal of Bioenergetics and Biomembranes

, Volume 42, Issue 2, pp 151–163 | Cite as

Minocycline chelates Ca2+, binds to membranes, and depolarizes mitochondria by formation of Ca2+-dependent ion channels

  • Yuri N. Antonenko
  • Tatyana I. Rokitskaya
  • Arthur J. L. Cooper
  • Boris F. Krasnikov


Minocycline (an anti-inflammatory drug approved by the FDA) has been reported to be effective in mouse models of amyotrophic lateral sclerosis and Huntington disease. It has been suggested that the beneficial effects of minocycline are related to its ability to influence mitochondrial functioning. We tested the hypothesis that minocycline directly inhibits the Ca2+-induced permeability transition in rat liver mitochondria. Our data show that minocycline does not directly inhibit the mitochondrial permeability transition. However, minocycline has multiple effects on mitochondrial functioning. First, this drug chelates Ca2+ ions. Secondly, minocycline, in a Ca2+-dependent manner, binds to mitochondrial membranes. Thirdly, minocycline decreases the proton-motive force by forming ion channels in the inner mitochondrial membrane. Channel formation was confirmed with two bilayer lipid membrane models. We show that minocycline, in the presence of Ca2+, induces selective permeability for small ions. We suggest that the beneficial action of minocycline is related to the Ca2+-dependent partial uncoupling of mitochondria, which indirectly prevents induction of the mitochondrial permeability transition.


Minocycline Mitochondria Permeability transition Bilayer membrane Channel formation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Castanares M, Vera Y, Erkkila K, Kyttanen S, Lue Y, Dunkel L, Wang C, Swerdloff RS, Hikim AP (2005) Biochem Biophys Res Commun 337:663–669CrossRefGoogle Scholar
  2. Chen Y, Schindler M, Simon SM (1999) J Biol Chem 274:18364–18373CrossRefGoogle Scholar
  3. Chu HC, Lin YL, Sytwu HK, Lin SH, Liao CL, Chao YC (2005) Br J Pharmacol 144:275–282CrossRefGoogle Scholar
  4. Cornet S, Spinnewyn B, Delaflotte S, Charnet C, Roubert V, Favre C, Hider H, Chabrier PE, Auguet M (2004) Eur J Pharmacol 505:111–119CrossRefGoogle Scholar
  5. Feigin AM, Aronov EV, Teeter JH, Brand JG (1995) Biochim Biophys Acta 1234:43–51CrossRefGoogle Scholar
  6. Fernandez-Gomez FJ, Gomez-Lazaro M, Pastor D, Calvo S, Aguirre N, Galindo MF, Jordán J (2005a) Neurobiol Dis 20:384–391CrossRefGoogle Scholar
  7. Fernandez-Gomez FJ, Galindo MF, Gomez-Lazaro M, González-García C, Ceña V, Aguirre N, Jordán J (2005b) Neuroscience 133:959–967CrossRefGoogle Scholar
  8. Gunter TE, Pfeiffer DR (1990) Am J Physiol 258:C755–786Google Scholar
  9. Halestrap AP, Woodfield KY, Connern CP (1997) J Biol Chem 272:3346–3354CrossRefGoogle Scholar
  10. Krasnikov BF, Zorov DB, Antonenko YN, Zaspa AA, Kulikov IV, Kristal BS, Cooper AJL, Brown AM (2005) Biochim Biophys Acta 1708:375–392CrossRefGoogle Scholar
  11. Kupsch K, Hertel S, Kreutzmann P, Wolf G, Wallesch CW, Siemen D, Schönfeld P (2009) FEBS J 276:1729–1738CrossRefGoogle Scholar
  12. Lin Q, Katakura K, Suzuki M (2002) FEBS Lett 515:71–74CrossRefGoogle Scholar
  13. Mansson R, Hansson MJ, Morota S, Uchino H, Ekdahl CT, Elmer E (2007) Neurobiol Dis 25:198–205CrossRefGoogle Scholar
  14. Matlib MA, Zhou Z, Knight S, Ahmed S, Choi KM, Krause-Bauer J, Phillips R, Altschuld R, Katsube Y, Sperelakis N, Bers DM (1998) J Biol Chem 273:10223–10231CrossRefGoogle Scholar
  15. Matsuki S, Iuchi Y, Ikeda Y, Sasagawa I, Tomita Y, Fujii J (2003) Biochem Biophys Res Commun 312:843–849CrossRefGoogle Scholar
  16. Mueller P, Rudin DO, Tien HT, Wescott WC (1963) J Phys Chem 67:534–535Google Scholar
  17. O’Brodovich H, Wang X, Li C, Rafii B, Correa J, Bear C (1993) Am J Physiol 264:C1532–1537Google Scholar
  18. Petronilli V, Cola C, Bernardi P (1993) J Biol Chem 268:1011–1016Google Scholar
  19. Sapadin AN, Fleischmajer R (2006) J Am Acad Dermatol 54:258–265CrossRefGoogle Scholar
  20. Scarabelli TM, Stephanou A, Pasini E, Gitti G, Townsend P, Lawrence K, Chen-Scarabelli C, Saravolatz L, Latchman D, Knight R, Gardin J (2004) J Am Coll Cardiol 43:865–874CrossRefGoogle Scholar
  21. Scott ID, Akerman KE, Nicholls DG (1980) Biochem J 192:873–880Google Scholar
  22. Sipos EP, Tamargo RJ, Weingart JD, Brem H (1994) Ann NY Acad Sci 732:263–272CrossRefGoogle Scholar
  23. Smith DL, Woodman B, Mahal A, Sathasivam K, Ghazi-Noori S, Lowden PA, Bates GP, Hockly E (2003) Ann Neurol 54:186–196CrossRefGoogle Scholar
  24. Teng YD, Choi H, Onario RC, Zhu S, Desilets FC, Lan S, Woodard EJ, Snyder EY, Eichler ME, Friedlander RM (2004) Proc Natl Acad Sci USA 101:3071–3076CrossRefGoogle Scholar
  25. Wang X, Zhu S, Drozda M, Zhang W, Stavrovskaya IG, Cattaneo E, Ferrante RJ, Kristal BS, Friedlander RM (2003) Proc Natl Acad Sci USA 100:10483–10487CrossRefGoogle Scholar
  26. Wang J, Wei Q, Wang CY, Hill WD, Hess DC, Dong Z (2004) J Biol Chem 279:19948–19954CrossRefGoogle Scholar
  27. White JR, Pearce FL (1982) Biochemistry 21:6309–6312CrossRefGoogle Scholar
  28. Yang L, Harroun TA, Weiss TM, Ding L, Huang HW (2001) Biophys J 81:1475–1485CrossRefGoogle Scholar
  29. Zhu S, Stavrovskaya IG, Drozda M, Kim BY, Ona V, Li M, Sarang S, Liu AS, Hartley DM, Wu DC, Gullans S, Ferrante RJ, Przedborski S, Kristal BS, Friedlander RM (2002) Nature 417:74–78CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Yuri N. Antonenko
    • 1
  • Tatyana I. Rokitskaya
    • 1
  • Arthur J. L. Cooper
    • 2
  • Boris F. Krasnikov
    • 2
  1. 1.A.N. Belozersky Institute of Physico-Chemical BiologyMoscow State UniversityMoscowRussia
  2. 2.Department of Biochemistry and Molecular BiologyNew York Medical CollegeValhallaUSA

Personalised recommendations