Journal of Bioenergetics and Biomembranes

, Volume 42, Issue 1, pp 1–10 | Cite as

The effect of NBD-Cl in nucleotide-binding of the major subunit α and B of the motor proteins F1FO ATP synthase and A1AO ATP synthase

  • Cornelia Hunke
  • Vikeramjeet Singh Tadwal
  • Malathy Sony Subramanian Manimekalai
  • Manfred Roessle
  • Gerhard Grüber


Subunit α of the Escherichia coli F1FO ATP synthase has been produced, and its low-resolution structure has been determined. The monodispersity of α allowed the studies of nucleotide-binding and inhibitory effect of 4-Chloro-7-nitrobenzofurazan (NBD-Cl) to ATP/ADP-binding. Binding constants (K d ) of 1.6 μM of bound MgATP-ATTO-647N and 2.9 μM of MgADP-ATTO-647N have been determined from fluorescence correlation spectroscopy data. A concentration of 51 μM and 55 μM of NBD-Cl dropped the MgATP-ATTO-647N and MgADP-ATTO-647N binding capacity to 50% (IC50), respectively. In contrast, no effect was observed in the presence of N,N′-dicyclohexylcarbodiimide. As subunit α is the homologue of subunit B of the A1AO ATP synthase, the interaction of NBD-Cl with B of the A-ATP synthase from Methanosarcina mazei Gö1 has also been shown. The data reveal a reduction of nucleotide-binding of B due to NBD-Cl, resulting in IC50 values of 41 μM and 42 μM for MgATP-ATTO-647N and MgADP-ATTO-647N, respectively.


F1FO ATP synthase A1AO ATP synthase Subunit α Subunit B 4-Chloro-7-nitrobenzofurazan (NBD-Cl) N,N′-dicyclohexylcarbodiimide (DCCD) Small angle X-ray scattering (SAXS) Fluorescence correlation spectroscopy (FCS) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We thank Dr. A. Balakrishna and A. Kumar for crystallographic data collection and isolation of subunit B from M. mazei Gö1, respectively. This research and the fellowship for Vikeramjeet S. Tadwal were supported by a grant from the Ministry of Education, Singapore (ARC 6/06 and RG144/06).

Supplementary material

10863_2009_9266_MOESM1_ESM.pdf (130 kb)
Supplementary Fig. 1 (PDF 129 kb)


  1. Abrahams JP, Buchanan SK, van Raau MJ, Fearnley IM, Leslie AGW, Walker JE (1996) Proc Natl Acad Sci U S A 93:9420–9424CrossRefGoogle Scholar
  2. Andrews WW, Hill FC, Allison WS (1984a) J Biol Chem 259:8219–8225Google Scholar
  3. Andrews WW, Hill FC, Allison WS (1984b) J Biol Chem 259:14378–14382Google Scholar
  4. Bernal RA, Stock D (2004) Structure 12:1789–1798CrossRefGoogle Scholar
  5. Biuković G, Rössle M, Gayen S, Mu Y, Grüber G (2007) Biochemistry 46:2070–2078CrossRefGoogle Scholar
  6. Boulin CJ, Kempf R, Koch MHJ, McLaughlin SM (1986) Nucl Instrum Methods A249:399–407Google Scholar
  7. Coskun Ü, Radermacher M, Müller V, Ruiz T, Grüber G (2004a) J Biol Chem 279:22759–22764CrossRefGoogle Scholar
  8. Coskun Ü, Chaban YL, Lingl A, Müller V, Keegstra W, Boekema EJ, Grüber G (2004b) J Biol Chem 279:38644–38648CrossRefGoogle Scholar
  9. Cross RL, Müller V (2004) FEBS Lett 576:1–4CrossRefGoogle Scholar
  10. Deppenmeier U, Müller V (2008) Results Probl Cell Differ 45:123–152CrossRefGoogle Scholar
  11. Gibbons C, Montgomery MG, Leslie AG, Walker JE (2000) Nat Struct Biol 7:1055–1061CrossRefGoogle Scholar
  12. Gledhill JR, Walker JE (2006) Biochem Soc Trans 34:989–992CrossRefGoogle Scholar
  13. Grüber G, Capaldi RA (1996) J Biol Chem 271:32623–32628CrossRefGoogle Scholar
  14. Grüber G, Marshansky V (2008) BioEssays 30:1096–1109CrossRefGoogle Scholar
  15. Grüber G, Godovac-Zimmermann J, Link TA, Coskun Ü, Rizzo VF, Betz C, Bailer S (2002) Biochem Biophys Res Commun 298:383–391CrossRefGoogle Scholar
  16. Guinier A, Fournet G (1955) Small angle scattering of x-rays. Wiley, New YorkGoogle Scholar
  17. Haughton MA, Capaldi RA (1995) J Biol Chem 270:20568–20574CrossRefGoogle Scholar
  18. Hausrath AC, Grüber G, Matthews BW, Capaldi RA (1999) Proc Natl Acad Sci U S A 96:13697–13702CrossRefGoogle Scholar
  19. Hilario E, Gogarten JP (1998) J Mol Evol 46:703–715CrossRefGoogle Scholar
  20. Hong S, Pedersen PL (2008) Microbiol Mol Biol Rev 72:590–641CrossRefGoogle Scholar
  21. Hunke C, Chen W-J, Schäfer H-J, Grüber G (2007) Protein Expr Purif 53:378–383CrossRefGoogle Scholar
  22. Jost M, Weigelt S, Huber T, Majer Z, Greie J-C, Altendorf K, Sewald N (2007) Chem Biodiversity 4:1170–1182CrossRefGoogle Scholar
  23. Kumar A, Manimekalai MSS, Balakrishna AM, Hunke C, Weigelt S, Sewald N, Grüber G (2009) Proteins: Struct, Funct, Bioinf 75:807–819CrossRefGoogle Scholar
  24. Laemmli UK (1970) Nature 227:680–685CrossRefGoogle Scholar
  25. Leslie AGW, Walker JE (2000) Philos Trans R Soc Lond B 355:465–471CrossRefGoogle Scholar
  26. Li W, Brudecki LE, Senior AE, Ahmad Z (2009) J Biol Chem 284:10747–10754CrossRefGoogle Scholar
  27. Lolkema JS, Chaban Y, Boekema EJ (2003) Bioenerg Biomembr 35:323–336CrossRefGoogle Scholar
  28. Manimekalai MSS, Kumar A, Balakrishna A, Grüber G (2009) J Struct Biol 166:39–45CrossRefGoogle Scholar
  29. Nakanishi-Matsui M, Futai M (2006) IUBMB Life 58:318–322CrossRefGoogle Scholar
  30. Nelson N (1992) Biochim Biophys Acta 1100:109–124CrossRefGoogle Scholar
  31. Orriss GL, Leslie AGW, Braig K, Walker JE (1998) Structure 6:831–837CrossRefGoogle Scholar
  32. Pedersen P, Ko YH, Hong S (2000) J Bioenerg Biomembr 32:325–332CrossRefGoogle Scholar
  33. Roessle MW, Klaering R, Ristau U, Robrahn B, Jahn D, Gehrmann T, Konarev PV, Round A, Fiedler S, Hermes S, Svergun DI (2007) J Appl Crystallogr 40:190–194CrossRefGoogle Scholar
  34. Round AR, Franke D, Moritz S, Huchler R, Fritsche M, Malthan D, Klaering R, Svergun DI, Roessle M (2008) J Appl Crystallogr 41:913–917CrossRefGoogle Scholar
  35. Schäfer I, Bailer SM, Düser MG, Börsch M, Ricardo AB, Stock D, Grüber G (2006) J Mol Biol 358:725–740CrossRefGoogle Scholar
  36. Sutton R, Ferguson SJ (1985) Eur J Biochem 148:551–554CrossRefGoogle Scholar
  37. Svergun DI (1993) J Appl Crystallogr 26:258–267CrossRefGoogle Scholar
  38. Svergun DI, Bećirević A, Schrempf H, Koch MHJ, Grüber G (2000) Biochemistry 39:10677–10683CrossRefGoogle Scholar
  39. Svergun DI, Petoukhov MV, Koch MHJ (2001) Biophys J 80:2946–2953CrossRefGoogle Scholar
  40. Vonck J, Pisa KY, Morgner N, Brutschy B, Müller V (2009) J Biol Chem 284:10110–10119CrossRefGoogle Scholar
  41. Walker JE, Dickson VK (2006) Biochim Biophys Acta 1757:286–296CrossRefGoogle Scholar
  42. Weber J, Wilke-Mounts S, Grell E, Senior AE (1994a) J Biol Chem 269:11261–11268Google Scholar
  43. Weber J, Wilke-Mounts S, Senior AE (1994b) J Biol Chem 269:20462–20467Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Cornelia Hunke
    • 1
  • Vikeramjeet Singh Tadwal
    • 1
  • Malathy Sony Subramanian Manimekalai
    • 1
  • Manfred Roessle
    • 2
  • Gerhard Grüber
    • 1
    • 3
  1. 1.School of Biological SciencesNanyang Technological UniversitySingaporeRepublic of Singapore
  2. 2.European Molecular Biology Laboratory, Hamburg OutstationHamburgGermany
  3. 3.Bioinformatics Institute (A*STAR)SingaporeSingapore

Personalised recommendations