Journal of Bioenergetics and Biomembranes

, Volume 39, Issue 5–6, pp 349–355 | Cite as

Transport ATPases into the year 2008: a brief overview related to types, structures, functions and roles in health and disease

  • Peter L. Pedersen


Transport ATPases can be lumped into four distinct types, P, F, V, and ABC, with the first three designated 20 years ago (Pedersen, P.L. and Carafoli, E., Trends Biochem. Sci. 12, 146–150, 1987) and the ABC type included more recently. The mini-reviews (>20) that comprise this volume of the Journal of Bioenergetics and Biomembranes describe work presented at the 2007 FASEB Conference (6th) on Transport ATPases (Kathleen Sweadner, Chair; Rajini Rao, Co-Chair). Since these conferences began in 1997, the “transport ATPase field” has seen tremendous progress. Advances include a much better understanding of the structure, mechanism, and regulation of each of the four major ATPase types as well as their physiological and medical relevance. In fact, the transport ATPase field has entered a new era in which work on these enzymes is likely to contribute to new therapies for multiple diseases that affect both people and animals. Among these are cancer and heart disease, mitochondrial diseases, osteoporosis, macromolecular degeneration, immune deficiency, cystic fibrosis, diabetes, ulcers, nephro-toxicity, hearing loss, skin disorders, lupus, and malaria. In addition, as several members of the transport ATPase family include those involved in drug resistance their study may help alleviate this recurring problem in drug development. Finally, the transport ATPase field is also paving the way for nanotechnology focused on nano-motors with work on the F-type ATPases (F0F1) leading the way. These ATPases driven in reverse by a proton gradient have the capacity to interconvert electrochemical energy into mechanical energy and finally into chemical energy conserved in the terminal bond of ATP. In mammalian mitochondria these events occur on a larger complex or “nano-machine” called the “ATP synthasome” that consists of the ATP synthase in complex formation with carriers for Pi and ADP/ATP.


Transport ATPases P-type ATPase F-type ATPase V-type ATPase ABC transporter ATP synthasome cancer heart disease cystic fibrosis nano-motors drug resistance 



The author is grateful for support from NIH via research grants CA 10951 and CA 80018, to Dr. Young Ko for helpful discussions, and to David Blum and Young Ko for their expert help in preparing the figures.


  1. Abrahams JP, Leslie AG, Lutter R, Walker JE (1994) Nature 370:621–628CrossRefGoogle Scholar
  2. Ambudkar SV, Kimchi-Sarfaty C, Sauna ZE, Gottesman MM (2003) Oncogene 22:7468–7485CrossRefGoogle Scholar
  3. Andersen JB, Vilsen B (1995) FEBS Lett 359:101–106CrossRefGoogle Scholar
  4. Bianchet MA, Hullihen J, Pedersen PL, Amzel LM (1998) Proc Natl Acad Sci U S A 95:11065–11070CrossRefGoogle Scholar
  5. Blum DJ, Ko YH, Hong S, Rini DA, Pedersen PL (2001) Biochem Biophys Res Commun 287:801–807CrossRefGoogle Scholar
  6. Cain BD (2000) J Bioenerg Biomemb 32:365–371CrossRefGoogle Scholar
  7. Caplan MJ (2007) J Clin Gastroenterol 41:S217–222CrossRefGoogle Scholar
  8. Charnock JS, Rosenthal AS, Post RL (1963) Aust J Exp Biol Med 41:675–686CrossRefGoogle Scholar
  9. Chen C, Ko Y, Delannoy M, Ludtke SJ, Chiu W, Pedersen PL (2004) J Biol Chem 279:31761–31768CrossRefGoogle Scholar
  10. Chen C, Saxena AK, Simcoke WN, Garboczi DN, Pedersen PL, Ko YH (2006) J Biol Chem 281:13777–13783CrossRefGoogle Scholar
  11. Davidson AI, Chen J (2004) Annu Rev Biochem 73:241–268CrossRefGoogle Scholar
  12. Dean M, Annilo T (2005) Annu Rev Genomics Hum Genet 6:123–142CrossRefGoogle Scholar
  13. Dean M, Rzhetsky A, Allikmets R (2001) Genome Res 11:1156–1166CrossRefGoogle Scholar
  14. Dickson VK, Silvester JA, Fearnley IM, Leslie AG, Walker JE (2006) EMBO J 25:2911–2918CrossRefGoogle Scholar
  15. Dmitriev O, Tsivkovskii R, Abildgaard F, Morgan CT, Markley JL, Lutsenko S (2006) Proc Natl Acad Sci U S A 103:5302–5307CrossRefGoogle Scholar
  16. Drory O, Nelson N (2006) Physiology (Bethesda) 21:317–325Google Scholar
  17. Einholm AP, Andersen JP, Vilsen B (2007) J Bioenerg Biomembranes 39 (5/6) (this volume)Google Scholar
  18. Gerle C, Tani K, Yokoyama K, Tamakoshi M, Yoshida M, Fujiyyoshi Y, Mitsuoka K (2006) J Struct Biol 153:200–206CrossRefGoogle Scholar
  19. Golden TR, Pedersen PL (1998) Biochemistry 37:13871–13881CrossRefGoogle Scholar
  20. Gottesman MM, Ambudkar S (2001) J Bioenerg Biomemb 33:453–458CrossRefGoogle Scholar
  21. Hatori Y, Majima E, Tsuda T, Toyoshima C (2007) J Biol Chem 282:25213–25221CrossRefGoogle Scholar
  22. Higgins CF (2001) Res Microbiol 152:205–210CrossRefGoogle Scholar
  23. Hollenstein K, Dawson RJP, Locher KP (2007) Curr Opin Struct Biol 17:412–418CrossRefGoogle Scholar
  24. Imamura H, Takeda M, Funamoto S, Shimabukuro K, Yoshida M, Yokoyama K (2005) Proc Natl Acad Sci U S A 102:17929–33CrossRefGoogle Scholar
  25. Kenan DJ, Wahl ML (2005) J Bioenerg Biomembranes 37:461–465CrossRefGoogle Scholar
  26. Ko YH, Bianchet M, Amzel LM, Pedersen PL (1997) J Biol Chem 272:18875–18881CrossRefGoogle Scholar
  27. Ko YH, Delannoy M, Hullihen J, Chiu W, Pedersen PL (2003) J Biol Chem 278:12305–12309CrossRefGoogle Scholar
  28. Ko YH, Hong S, Pedersen PL (1999) J Biol Chem 274:28853–28856CrossRefGoogle Scholar
  29. Ko YH, Hullihen J, Hong S, Pedersen PL (2000) J Biol Chem 275:32931–32939CrossRefGoogle Scholar
  30. Lou H, Dean M (2007) Oncogene 26:1357–1360CrossRefGoogle Scholar
  31. Morth JP, Pedersen BP, Toustrup-Jensen MS, Sorensen TL-M, Petersen J, Andersen JP, Vilsen B, Nissen P (2007) Nature 450:1043–1049CrossRefGoogle Scholar
  32. Moody JE, Thomas PJ (2005) J Bioenerg Biomemb 37:475–479CrossRefGoogle Scholar
  33. Moser TL, Stack MS, Asplin I, Enghild JJ, Hojrup P, Everitt L, Hubchak S, Schnaper HW, Pizzo SV (1999) Proc Natl Acad Sci U S A 96:2811–2816CrossRefGoogle Scholar
  34. Noji H, Yamada R, Yoshida M, Kinsosita K Jr (1997) Nature 386:299–302CrossRefGoogle Scholar
  35. Omote H, Sambonmatsu N, Saito K, Sambongi Y, Iwamoto-Kihara A, Yanagida T, Wada Y, Futai M (1999) Proc Natl Acad Sci U S A 96:7780–7784CrossRefGoogle Scholar
  36. Pedersen PL (2002) J Bioenerg Biomembranes 34:327–332CrossRefGoogle Scholar
  37. Pedersen PL (2005) J Bioenerg Biomembranes 37:349–357CrossRefGoogle Scholar
  38. Pedersen PL, Carafoli E (1987) Trends Biochem Sci 12:186–189CrossRefGoogle Scholar
  39. Post RL, Sen AK, Rosenthal AS (1965) J Biol Chem 240:1437–1445Google Scholar
  40. Skou JC (1957) Biochem Biophys Acta 23:394–401CrossRefGoogle Scholar
  41. Stock D, Gibbons C, Arechaga I, Leslie AG, Walker JE (2000) Curr Opin Struct Biol 10:672–679CrossRefGoogle Scholar
  42. Toyoshima C (2007) Adv Exp Med Biol 592:295–303CrossRefGoogle Scholar
  43. Toyoshima C, Inesi G (2004) Annu Rev Biochem 73:269–292CrossRefGoogle Scholar
  44. Vik SB, Antonio BJ (1994) J Biol Chem 269:30364–30369Google Scholar
  45. Wilkens S, Capaldi RA (1998) Nature 393:329CrossRefGoogle Scholar
  46. Wilkens S, Inoue T, Forgac M (2004) J Biol Chem 279:41942–41949CrossRefGoogle Scholar
  47. Wilkens S, Zhang Z, Zheng Y (2005) Micron 36:109–126CrossRefGoogle Scholar
  48. Xu J, Cheng T, Feng HT, Pavlos NJ, Zheng MH (2007) Histol Histopathol 22:443–454Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of Biological ChemistryJohns Hopkins University, School of MedicineBaltimoreUSA

Personalised recommendations