Advertisement

Journal of Bioenergetics and Biomembranes

, Volume 39, Issue 5–6, pp 379–383 | Cite as

Structures of the FXYD regulatory proteins in lipid micelles and membranes

  • Carla M. Franzin
  • Xiao-Min Gong
  • Peter Teriete
  • Francesca M. Marassi
Transport ATPases: Structure, Mechanism and Relevance to Multiple Diseases

Abstract

The FXYD membrane proteins constitute a family of conserved auxiliary subunits of the Na,K-ATPase, and have been the focus of recent attention due to their ability to finely regulate the activity of the enzyme complex in various physiological settings. In this review we describe the structures of the proteins, as well as their dynamics and their associations with the lipid bilayer membrane, which we have recently determined by NMR spectroscopy. Although the proteins are relatively small, their genes contain as many as six to nine small exons, and the coincidence of structured protein segments with their genetic elements suggests assembly from discrete structural modules through exon shuffling. The three-dimensional structures and backbone dynamics provide the foundation for understanding their intra-membrane association with the Na,K-ATPase α subunit, and the structure of FXYD1 suggests a mechanism whereby the phosphorylation of conserved Ser residues, by protein kinases A and C, could induce a conformational change in the cytoplasmic domain of the protein, to modulate its interaction with the α subunit.

Keywords

FXYD Na,K-ATPase Structure Membrane protein Micelles Membrane NMR 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cornelius F, Mahmmoud YA (2003) News Physiol Sci 18:119–124Google Scholar
  2. Crambert G, Geering K (2003) Sci STKE 2003, RE1Google Scholar
  3. Franzin CM, Marassi FM (2005) NMR Structure determination of proteins in bilayer lipid membranes: the FXYD family proteins. In: Tien HT, Ottova-Leitmannova A (eds) Advances in planar lipid bilayers and liposomes. Elsevier, Amsterdam, pp 77–93Google Scholar
  4. Franzin CM, Yu J, Thai K, Choi J, Marassi FM (2005) J Mol Biol 354:743–750CrossRefGoogle Scholar
  5. Franzin CM, Teriete P, Marassi FM (2007) J Am Chem Soc 129:8078–8079CrossRefGoogle Scholar
  6. Garty H, Karlish SJ (2006) Annu Rev Physiol 68:431–459CrossRefGoogle Scholar
  7. Hebert H, Purhonen P, Vorum H, Thomsen K, Maunsbach AB (2001) J Mol Biol 314:479–494CrossRefGoogle Scholar
  8. Meij IC, Koenderink JB, van Bokhoven H, Assink KF, Groenestege WT, de Pont JJ, Bindels RJ, Monnens LA, van den Heuvel LP, Knoers NV (2000) Nat Genet 26:265–266CrossRefGoogle Scholar
  9. Newton AC (2003) Biochem J 370:361–371CrossRefGoogle Scholar
  10. Purhonen P, Thomsen K, Maunsbach AB, Hebert H (2006) J Membr Biol 214:139–146CrossRefGoogle Scholar
  11. Sweadner KJ, Rael E (2000) Genomics 68:41–56CrossRefGoogle Scholar
  12. Teriete P, Franzin CM, Choi J, Marassi FM (2007) Biochemistry 46:6774–6783CrossRefGoogle Scholar
  13. Vinton BB, Wertz SL, Jacob J, Steere J, Grisham CM, Cafiso DS, Sando JJ (1998) Biochem J 330(Pt 3):1433–1442Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Carla M. Franzin
    • 1
  • Xiao-Min Gong
    • 1
  • Peter Teriete
    • 1
  • Francesca M. Marassi
    • 1
    • 2
  1. 1.Burnham Institute for Medical ResearchLa JollaUSA
  2. 2.The Burnham InstituteLa JollaUSA

Personalised recommendations