Skip to main content

Advertisement

Log in

Oxygen metabolism and a potential role for cytochrome c oxidase in the Warburg effect

  • Mini Review
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

By manipulating the physical properties of oxygen, cells are able to harvest the large thermodynamic potential of oxidation to provide a substantial fraction of the energy necessary for cellular processes. The enzyme largely responsible for this oxygen manipulation is cytochrome c oxidase, which resides at the inner mitochondrial membrane. For unknown reasons, cancer cells do not maximally utilize this process, but instead rely more on an anaerobic-like metabolism demonstrating the so-called Warburg effect. As the enzyme at the crossroads of oxidative metabolism, cytochrome c oxidase might be expected to play a role in this so-called Warburg effect. Through protein assay methods and metabolic studies with radiolabeled glucose, alterations associated with cancer and cytochrome c oxidase subunit levels are explored. The implications of these findings for cancer research are discussed briefly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bongaerts GP, van Halteren HK, Verhagen CA, Wagner DJ (2006) Med Hypotheses 67:1213–1222

    Article  CAS  Google Scholar 

  • Chesney J, Mitchell R, Benigni F, Bacher M, Spiegel L, Al-Abed Y, Han JH, Metz C, Bucala R (1999) Proc Natl Acad Sci USA 96:3047–3052

    Article  CAS  Google Scholar 

  • Collman JP, Herrmann PC, Boitrel B, Zhang X, Eberspacher TA, Fu L, Wang J, Rousseau DL, Williams ER (1994) J Am Chem Soc 116:9783–9784

    Article  CAS  Google Scholar 

  • Collman JP, Fu L, Herrmann PC, Zhang X (1997) Science 275:949–951

    Article  CAS  Google Scholar 

  • Collman JP, Fu L, Herrmann PC, Wang Z, Rapta M, Broring M, Schwenninger R, Boitrel B (1998) Angew Chem (Int Ed) 37:3397–3400

    Article  CAS  Google Scholar 

  • Collman JP, Boulatov R, Sunderland CJ, Fu L (2004) Chem Rev 104:561–588

    Article  CAS  Google Scholar 

  • Collman JP, Devaraj NK, Decreau RA, Yang Y, Yan YL, Ebina W, Eberspacher TA, Chidsey CED (2007) Science 315:1565–1568

    Article  CAS  Google Scholar 

  • Herrmann PC (1996) Synthetic models of cytochrome c oxidase and myoglobin. Dissertation, Stanford University Department of Chemistry, pp 1–28

  • Herrmann PC, Gillespie JW, Charboneau L, Bichsel VE, Paweletz CP, Calvert VS, Kohn EC, Emmert-Buck MR, Liotta LA, Petricoin EF III (2003) Proteomics 3:1801–1810

    Article  CAS  Google Scholar 

  • Hey Y, Hoggard N, Burt E, James LA, Varley JM (1997) Cytogenet Cell Genet 77:167–168

    Article  CAS  Google Scholar 

  • Hofmann S, Lichtner P, Schuffenhauser S, Gerbitz KD, Meitinger T (1998) Cytogenet Cell Genet 83:226–227

    Article  CAS  Google Scholar 

  • Holmes FL (1985) Lavoisier and the chemistry of life: an exploration of scientific creativity. University of Wisconsin Press, Madison

    Google Scholar 

  • Kadenbach B, Huttemann M, Arnold S, Lee I, Bender E (2000) Free Radic Biol Med 29:211–221

    Article  CAS  Google Scholar 

  • Ko YH, Smith BL, Wang Y, Pomper MG, Rini DA, Torbenson MS, Hullihen J, Pedersen PL (2004) Biochem Biophys Res Commun 324:269–275

    Article  CAS  Google Scholar 

  • Krieg RC, Knuechel R, Schiffmann E, Liotta LA, Petricoin EF III, Herrmann PC (2004a) Proteomics 4:2789–2795

    Article  CAS  Google Scholar 

  • Krieg RC, Liotta LA, Petricoin EF III, Herrmann PC (2004b) J Biochem Biophys Methods 58:119–124

    Article  CAS  Google Scholar 

  • Lee N, Morin C, Mitchell G, Robinson BH (1998) Biochim Biophys Acta 1406:1–4

    CAS  Google Scholar 

  • Mathupala SP, Rempel A, Pedersen PL (1997) J Bioenerg Biomembranes 29:339–343

    Article  CAS  Google Scholar 

  • Mathupala SP, Ko YH, Pedersen PL (2006) Oncogene 25:4777–4786

    Article  CAS  Google Scholar 

  • Nakashima RA, Paggi MG, Pedersen PL (1984) Cancer Res 44:5702–5706

    CAS  Google Scholar 

  • Pedersen PL (1978) Prog Exp Tumor Res 22:190–274

    CAS  Google Scholar 

  • Perrin A, Roudier E, Duborjal H, Bachelet C, Riva-Lavieille C, Leverve X, Massarelli R (2002) Biochimie 84:1003–1011

    Article  CAS  Google Scholar 

  • Tisdale MJ (1997) J Natl Cancer Inst 89:1763–1773

    Article  CAS  Google Scholar 

  • Tsukihara T, Aoyama H, Yamashita E, Tomizaki T, Yamaguchi H, ShinzawaItoh K, Nakashima R, Yaona R, Yoshikawa S (1996) Science 272:1136–1144

    Article  CAS  Google Scholar 

  • Vijayasarathy C, Biunno I, Lenka N, Yang M, Basu A, Hall IP, Avadhani NG (1998) Biochim Biophys Acta 1371:71–82

    Article  CAS  Google Scholar 

  • Warburg O (1925) Ber Dtsch Chem Ges 58:1001–1003

    Article  Google Scholar 

  • Warburg O (1929) Biochem Z 204:482–494

    CAS  Google Scholar 

  • Warburg O (1930) Metabolism of tumors. Arnold Constable, London

    Google Scholar 

  • Warburg O (1956) Science 123:309–314

    Article  CAS  Google Scholar 

  • Warburg O, Kubowitz F (1927) Biochem Z 189:242–249

    CAS  Google Scholar 

  • Warburg O, Negelein E (1928) Biochem Z 193:334–339

    CAS  Google Scholar 

  • Warburg O, Posenor K, Negelein E (1924) Biochem Z 152:309–345

    CAS  Google Scholar 

  • Yanamara W, Zhang YZ, Takamiya S, Capaldi RA (1988) Biochemistry 27:4909–4914

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul C. Herrmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herrmann, P.C., Herrmann, E.C. Oxygen metabolism and a potential role for cytochrome c oxidase in the Warburg effect. J Bioenerg Biomembr 39, 247–250 (2007). https://doi.org/10.1007/s10863-007-9084-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-007-9084-z

Keywords

Navigation