Advertisement

Journal of Bioenergetics and Biomembranes

, Volume 39, Issue 2, pp 203–209 | Cite as

Dietary fatty acid composition differently influences retinoylation reaction in rat testes mitochondria

  • Erika Cione
  • Valentina Senatore
  • Paola Tucci
  • Anna M. Giudetti
  • Francesco Genchi
  • Gabriele V. Gnoni
  • Giuseppe Genchi
Article

Abstract

All-trans-retinoic acid (atRA) is incorporated covalently into proteins of rat testes mitochondria. In this study, the effect of three diets with different fatty acid composition on the retinoylation of proteins of rat testes mitochondria has been investigated. Different groups of rats were fed on a basal diet supplemented with 15% of either coconut oil (CO), olive oil (OO) or fish oil (FO). We found that, when compared with CO, the binding of retinoic acid was decreased in FO- and OO-fed rats. Mitochondrial phospholipids composition was differently influenced by dietary treatments; minor changes were observed in fatty acid composition of phospholipids. Few differences were observed in the Arrhenius plots among the three groups of rats. Kinetic analysis revealed a decrease in the V max value in FO- and OO- as compared with CO-fed rats. No difference among the three groups were observed in the K M value. The retinoylation reaction was inhibited by 13-cis-RA and 9-cis-RA.

Keywords

All-trans-retinoic acid Fatty acids Mitochondria Phospholipids Retinoylation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bailey NTJ (1995) Statistical methods in biology. Cambridge University Press, Cambridge, UKGoogle Scholar
  2. Bligh EG, Dyer WJ (1959) Can J Med Sci 37:911–917Google Scholar
  3. Blomhoff R, Green MH, Green JB, Berg T, Norum KR (1991) Physiol Rev 71:951–990Google Scholar
  4. Bollag W (1985) In: Saurat JH (ed) Retinoids, new trends in research and therapy. Karger, Basel, pp 274–297Google Scholar
  5. Bray GA, Fisler J, York DA (1990) Front Neuroendocrinol 11:128–181Google Scholar
  6. Chambon P (1996) FASEB J 10:940–954Google Scholar
  7. Cione E, Genchi G (2004) J Bioenerg Biomembr 362:211–217Google Scholar
  8. Clinton SK, Mulloy AL, Li SP, Mangian HJ, Visek WJ (1997) J Nutr 127:225–237Google Scholar
  9. Connor WE, Lin DS, Neuringer M (1997) J Clin Endocrinol Metab 82:1991–1916Google Scholar
  10. Dorgan JF, Judd JT, Longcope C, Brown C, Schatzkin A, Clevidence BA, Campbell WS, Nair PP, Franz C, Kahle L, Taylor PR (1997) Am J Clin Nutr 64:850–855Google Scholar
  11. Furland NE, Maldonado EN, Avellano MI (2003) Lipids 38:73–80Google Scholar
  12. Garrel DR (1997) Nutrition 13:482–483Google Scholar
  13. Genchi G, Olson JA (2001) Biochim Biophys Acta 1530:146–154Google Scholar
  14. Giudetti AM, Sabetta S, Di Summa R, Leo M, Damiano F, Siculella L, Gnoni GV (2003) J Lipid Res 44:2135–2141Google Scholar
  15. Hanis T, Zidek V, Sachova J, Klir P, Deyl Z (1990) Brit J Nutr 61:519–529Google Scholar
  16. Jump DB, Ren B, Clarke S, Thelen A (1995) Prostaglandins Leukot Essent Fatty Acids 52:107–112Google Scholar
  17. Kastner P, Mark M, Chambon P (1995) Cell 83:859–869Google Scholar
  18. Lowry OH, Rosebrough NJ, Randall RJ (1951) J Biol Chem 193:265–275Google Scholar
  19. Mangelsdorf DJ, Umesono K, Evans RM (1994) In: Sporn MB, Roberts AB, Goodman DS (eds) The retinoids: Biology, chemistry and medicine. Raven Press, New York, pp 319–349Google Scholar
  20. Muci MR, Cappello AR, Vonghia G, Bellitti E, Zezza L, Gnoni GV (1992) Int J Vitam Nutr Res 62:330–333Google Scholar
  21. Myhre AM, Takahashi N, Blomhoff R, Breitman TR, Norum KR (1996) J Lipid Res 37:1971–1977Google Scholar
  22. Myhre AM, Hagen E, Blomhoff R, Norum KR (1998) J Nutr Biochem 9:705–711Google Scholar
  23. Nakamura GR (1952) Anal Chem 24:1372Google Scholar
  24. Palmieri F, Indiveri C, Bisaccia F, Kramer R (1993) J Bioenerg Biomembr 25:525–535Google Scholar
  25. Parris MK (1996) Alternative Med Rev 2:70–84.Google Scholar
  26. Renstrom B, DeLuca HF (1996) Biochim Biophys Acta 998:69–74Google Scholar
  27. Romanelli F, Valenca M, Conte D, Isidori A, Negro-Vilar A (1995) J Endocrinol Invest 18:186–193Google Scholar
  28. Ruggiero FM, Landriscina C, Gnoni GV, Quagliariello E (1984) Lipids 19:171–178Google Scholar
  29. Scott TW, Voglmayr JK, Setchell BP (1967) Biochem J 102:456–461Google Scholar
  30. Sebokova E, Garg ML, Wierzbicki A, Thompson AB, Clandinin MT (1990) J Nutr 120:610–618Google Scholar
  31. Sulimovici S, Bartoov B, Lunenfeld B (1975) Biochim Biophys Acta 377:454–462Google Scholar
  32. Thompson JN, Howell JM, Pitt JAG (1964) Proc R Soc Lond B Biol Sci 159:510–535Google Scholar
  33. Wada M, Fukui T, Kubo Y, Takahashi N (2001) J Biochem 130:457–463Google Scholar
  34. Weller DP, Zaneveld JD, Farnsworth NR (1985) Econ Med Plant Res 1:87–112Google Scholar
  35. Wolf G (2000) Nutr Rev 58:151–153Google Scholar
  36. Yamasaki K, Sawaki M, Noda S, Takatuki M (2001) Exp Anim 50:173–177Google Scholar
  37. Zara V, Giudetti AM, Siculella L, Palmieri F, Gnoni GV (2000) Eur J Biochem 268:5734–5739Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Erika Cione
    • 1
  • Valentina Senatore
    • 1
  • Paola Tucci
    • 1
  • Anna M. Giudetti
    • 2
  • Francesco Genchi
    • 3
  • Gabriele V. Gnoni
    • 2
  • Giuseppe Genchi
    • 1
    • 4
  1. 1.Department of Pharmaco-Biology, Laboratory of BiochemistryUniversity of CalabriaRende (CS)Italy
  2. 2.Department of Biological and Environmental Sciences and Technologies,Laboratory of Biochemistry University of LecceLecceItaly
  3. 3.Department of Pharmaco-Biology, Laboratory of BiochemistryUniversity of BariBariItaly
  4. 4.Dipartimento Farmaco-BiologicoUniversità della CalabriaRende (CS)Italy

Personalised recommendations