Cytochrome c oxidase subunit IV is essential for assembly and respiratory function of the enzyme complex


Cytochrome c oxidase or complex IV, catalyzes the final step in mitochondrial electron transfer chain, and is regarded as one of the major regulation sites for oxidative phosphorylation. This enzyme is controlled by both nuclear and mitochondrial genomes. Among its 13 subunits, three are encoded by mitochondrial DNA and ten by nuclear DNA. In this work, an RNA interference approach was taken which led to the generation of mouse A9 cell derivatives with suppressed expression of nuclear-encoded subunit IV (COX IV) of this complex. The amounts of this subunit are decrease by 86% to 94% of normal level. A detail biosynthetic and functional analysis of several cell lines with suppressed COX IV expression revealed a loss of assembly of cytochrome c oxidase complex and, correspondingly, a reduction in cytochrome c oxidase-dependent respiration and total respiration. Furthermore, dysfunctional cytochrome c oxidase in the cells leads to a compromised mitochondrial membrane potential, a decreased ATP level, and failure to grow in galactose medium. Interestingly, suppression of COX IV expression also sensitizes the cells to apoptosis. These observations provide the evidence of the essential role of the COX IV subunit for a functional cytochrome c oxidase complex and also demonstrate a tight control of cytochrome c oxidase over oxidative phosphorylation. Finally, our results further shed some insights into the pathogenic mechanism of the diseases caused by dysfunctional cytochrome c oxidase complex.

This is a preview of subscription content, log in to check access.


  1. 1.

    Capaldi RA (1990) Annu Rev Biochem 59:569–596

    Article  CAS  Google Scholar 

  2. 2.

    Barrientos A, Barros M H, Valnot I, Rotig A, Rustin P, Tzagoloff A (2002) Gene 286:53–63

    Article  CAS  Google Scholar 

  3. 3.

    Kadenbach B, Huttemann M, Arnold S, Lee I, Bender E (2000) Free Radic Biol Med 29:211–221

    Article  CAS  Google Scholar 

  4. 4.

    Attardi G, Schatz G (1988) Annu Rev Cell Biol 4:289–333

    Article  CAS  Google Scholar 

  5. 5.

    Villani G, Greco M, Papa S, Attardi G (1998) J Biol Chem 273:31829–31836

    Article  CAS  Google Scholar 

  6. 6.

    Shoubridge EA (2001) Am J Med Genet 106:46–52

    Article  CAS  Google Scholar 

  7. 7.

    Littlefield JW (1963) Proc Natl Acad Sci USA 50:568–573

    Article  CAS  Google Scholar 

  8. 8.

    Chomyn A (1996) Methods Enzymol 264:197–211

    CAS  Google Scholar 

  9. 9.

    Nijtmans LG, Henderson NS, Holt IJ (2002) Methods 26:327–334

    Article  CAS  Google Scholar 

  10. 10.

    Schagger H (1996) Methods Enzymol 264:555–566

    CAS  Google Scholar 

  11. 11.

    Bai Y, Attardi G (1998) Embo J 17:4848–4858

    Article  CAS  Google Scholar 

  12. 12.

    Hofhaus G, Shakeley RM, Attardi G (1996) Methods Enzymol 264:476–483

    CAS  Google Scholar 

  13. 13.

    Wong A, Cortopassi, GA (2002) Biochem Biophys Res Commun 298:750–754

    Article  CAS  Google Scholar 

  14. 14.

    Hayashi J, Ohta S, Kikuchi A, Takemitsu M, Goto Y, Nonaka I (1991) Proc Natl Acad Sci USA 88:10614–10618

    Article  CAS  Google Scholar 

  15. 15.

    Schagger H (1995) Methods Enzymol 260:190–202

    CAS  Article  Google Scholar 

  16. 16.

    Bai Y, Hu P, Park JS, Deng JH, Song X, Chomyn A, Yagi T, Attardi G (2004) Ann N Y Acad Sci 1011:272–283

    Article  CAS  Google Scholar 

  17. 17.

    Chen LB (1988) Annu Rev Cell Biol 4:155–181

    Article  CAS  Google Scholar 

  18. 18.

    Robinson BH (1996) Methods Enzymol 264:454–464

    CAS  Google Scholar 

  19. 19.

    Kroemer G (2003) Biochem Biophys Res Commun 304:433–435

    Article  CAS  Google Scholar 

  20. 20.

    Polster BM, Fiskum G. (2004) J Neurochem 90:1281–1289

    Article  CAS  Google Scholar 

  21. 21.

    Danielson SR, Wong A, Carelli V, Martinuzzi A, Schapira AH, Cortopassi GA (2002) J Biol Chem 277:5810–5815

    Article  CAS  Google Scholar 

  22. 22.

    Wang X (2001) Genes Dev 15:2922–2933

    CAS  Google Scholar 

  23. 23.

    Bruno C, Martinuzzi A, Tang Y, Andreu AL, Pallotti F, Bonilla E, Shanske S, Fu J, Sue CM, Angelini C, DiMauro S, Manfredi G (1999) Am J Hum Genet 65:611–620

    Article  CAS  Google Scholar 

  24. 24.

    Clark KM, Taylor RW, Johnson MA, Chinnery PF, Chrzanowska-Lightowlers ZM, Andrews RM, Nelson IP, Wood NW, Lamont PJ, Hanna MG, Lightowlers RN, Turnbull DM (1999) Am J Hum Genet 64:1330–1339

    Article  CAS  Google Scholar 

  25. 25.

    Rahman S, Taanman JW, Cooper JM, Nelson I, Hargreaves I, Meunier B, Hanna MG, Garcia JJ, Capaldi RA, Lake BD, Leonard JV, Schapira AH (1999) Am J Hum Genet 65:1030–1039

    Article  CAS  Google Scholar 

  26. 26.

    Tiranti V, Corona P, Greco M, Taanman JW, Carrara F, Lamantea E, Nijtmans L, Uziel G, Zeviani M (2000) Hum Mol Genet 9:2733–2742

    Article  CAS  Google Scholar 

  27. 27.

    D'Aurelio M, Pallotti F, Barrientos A, Gajewski CD, Kwong JQ, Bruno C, Beal MF, Manfredi G (2001) J Biol Chem 276:46925–46932

    Article  Google Scholar 

  28. 28.

    Ludwig B, Bender E, Arnold S, Huttemann M, Lee I, Kadenbach B (2001) Chembiochem 2:392–403

    Article  CAS  Google Scholar 

  29. 29.

    Lenaz G, D'Aurelio M, Merlo Pich M, Genova ML, Ventura B, Bovina C, Formiggini G, Parenti Castelli G (2000) Biochim Biophys Acta 1459:397–404

    Article  CAS  Google Scholar 

  30. 30.

    Ferguson M, Mockett RJ, Shen Y, Orr WC, Sohal RS (2005) Biochem J 390:501–511

    Article  CAS  Google Scholar 

  31. 31.

    Navarro A, Sanchez Del Pino MJ, Gomez C, Peralta JL, Boveris A (2002) Am J Physiol Regul Integr Comp Physiol 282:R985–992

    CAS  Google Scholar 

  32. 32.

    Sullivan PG, Brown MR (2005) Prog Neuropsychopharmacol Biol Psychiatry 29:407–410

    Article  CAS  Google Scholar 

  33. 33.

    Nicholls DG (2004) Aging Cell 3:35–40

    Article  CAS  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Yidong Bai.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Li, Y., Park, J., Deng, J. et al. Cytochrome c oxidase subunit IV is essential for assembly and respiratory function of the enzyme complex. J Bioenerg Biomembr 38, 283–291 (2006).

Download citation


  • Mitochondria
  • Cytochrome c oxidase complex
  • RNA interference
  • Subunit IV of complex IV
  • Complex IV assembly
  • Mitochondrial respiration
  • Mitochondrial membrane potential
  • ATP synthesis
  • Apoptosis