Advertisement

Journal of Bioenergetics and Biomembranes

, Volume 37, Issue 6, pp 445–449 | Cite as

Structure and Function of Subunit a of the ATP Synthase of Escherichia coli

  • Steven B. Vik
  • Robert R. Ishmukhametov
Article

 

The structure of subunit a of the Escherichia coli ATP synthase has been probed by construction of more than one hundred monocysteine substitutions. Surface labeling with 3-N-maleimidyl-propionyl biocytin (MPB) has defined five transmembrane helices, the orientation of the protein in the membrane, and information about the relative exposure of the loops connecting these helices. Cross-linking studies using TFPAM-3 (N-(4-azido-2,3,5,6-tetrafluorobenzyl)-3-maleimido-propionamide) and benzophenone-4-maleimide have revealed which elements of subunit a are near subunits b and c. Use of a chemical protease reagent, 5-(-bromoacetamido)-1,10-phenanthroline-copper, has indicated that the periplasmic end of transmembrane helix 5 is near that of transmembrane helix 2.

Key Words

ATP synthase subunit a proton translocation cysteine mutagenesis membrane topology 

Abbreviations

MPB

3-N-maleimidyl-propionyl biocytin

TFPAM-3

(N-(4-azido-2,3,5,6-tetrafluorobenzyl)-3-maleimido-propionamide

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aksimentiev, A., Balabin, I. A., Fillingame, R. H., and Schulten, K. (2004). Biophys. J. 86, 1332–1344.CrossRefGoogle Scholar
  2. Angevine, C. M., and Fillingame, R. H. (2003). J. Biol. Chem. 278, 6066–6074.CrossRefGoogle Scholar
  3. Angevine, C. M., Herold, K. A., and Fillingame, R. H. (2003). Proc. Natl. Acad. Sci. U.S.A. 100, 13179–13183.Google Scholar
  4. Bragg, P. D., and Hou, C. (1975). Arch. Biochem. Biophys. 167, 311–321.CrossRefGoogle Scholar
  5. Cain, B. D., and Simoni, R. D. (1989). J. Biol. Chem. 264, 3292–3300.Google Scholar
  6. Capaldi, R. A., and Aggeler, R. (2002). Trends Biochem. Sci. 27, 154–160.CrossRefGoogle Scholar
  7. DeLeon-Rangel, J., Zhang, D., and Vik, S. B. (2003). Arch. Biochem. Biophys. 418, 55–62.CrossRefGoogle Scholar
  8. Elston, T., Wang, H., and Oster, G. (1998). Nature 391, 510–513.CrossRefGoogle Scholar
  9. Foster, D. L., and Fillingame, R. H. (1982). J. Biol. Chem. 257, 2009–2015.Google Scholar
  10. Girvin, M. E., Rastogi, V. K., Abildgaard, F., Markley, J. L., and Fillingame, R. H. (1998). Biochemistry 37, 8817–8824.CrossRefGoogle Scholar
  11. Ishmukhametov, R. R., Galkin, M. A., and Vik, S. B. (2005). Biochim. Biophys. Acta 1706, 110–116.CrossRefGoogle Scholar
  12. Junge, W., Lill, H., and Engelbrecht, S. (1997). Trends Biochem. Sci. 22, 420–423.CrossRefGoogle Scholar
  13. Lightowlers, R. N., Howitt, S. M., Hatch, L., Gibson, F., and Cox, G. B. (1987). Biochim. Biophys. Acta 894, 399–406.CrossRefGoogle Scholar
  14. Long, J. C., DeLeon-Rangel, J., and Vik, S. B. (2002). J. Biol. Chem. 277, 27288–27293.CrossRefGoogle Scholar
  15. Long, J. C., Wang, S., and Vik, S. B. (1998). J. Biol. Chem. 273, 16235–16240.CrossRefGoogle Scholar
  16. Meier, T., Polzer, P., Diederichs, K., Welte, W., and Dimroth, P. (2005). Science 308, 659–662.CrossRefGoogle Scholar
  17. Patterson, A. R., Wada, T., and Vik, S. B. (1999). Arch. Biochem. Biophys. 368, 193–197.CrossRefGoogle Scholar
  18. Stock, D., Leslie, A. G., and Walker, J. E. (1999). Science 286, 1700–1705.CrossRefGoogle Scholar
  19. Valiyaveetil, F. I., and Fillingame, R. H. (1998). J. Biol. Chem. 273, 16241–16247.CrossRefGoogle Scholar
  20. Vik, S. B., and Antonio, B. J. (1994). J. Biol. Chem. 269, 30364–30369.Google Scholar
  21. Vik, S. B., Cain, B. D., Chun, K. T., and Simoni, R. D. (1988). J. Biol. Chem. 263, 6599–6605.Google Scholar
  22. Vik, S. B., Lee, D., Curtis, C. E., and Nguyen, L. T. (1990). Arch. Biochem. Biophys. 282, 125–131.CrossRefGoogle Scholar
  23. Vik, S. B., Lee, D., and Marshall, P. A. (1991). J. Bacteriol. 173, 4544–4548.Google Scholar
  24. Vik, S. B., Long, J. C., Wada, T., and Zhang, D. (2000). Biochim. Biophys. Acta 1458, 457–466.CrossRefGoogle Scholar
  25. Vik, S. B., Patterson, A. R., and Antonio, B. J. (1998). J. Biol. Chem. 273, 16229–16234.CrossRefGoogle Scholar
  26. Wada, T., Long, J. C., Zhang, D., and Vik, S. B. (1999). J. Biol. Chem. 274, 17353–17357.CrossRefGoogle Scholar
  27. Walker, J. E., Saraste, M., and Gay, N. J. (1984). Biochim. Biophys. Acta 768, 164–200.Google Scholar
  28. Wu, J., Perrin, D. M., Sigman, D. S., and Kaback, H. R. (1995). Proc. Natl. Acad. Sci. U.S.A. 92, 9186–9190.Google Scholar
  29. Zhang, D., and Vik, S. B. (2003a). J. Biol. Chem. 278, 12319–12324.CrossRefGoogle Scholar
  30. Zhang, D., and Vik, S. B. (2003b). Biochemistry 42, 331–337.CrossRefGoogle Scholar
  31. Zhang, W., Bogdanov, M., Pi, J., Pittard, A. J., and Dowhan, W. (2003). J. Biol. Chem. 278, 50128–50135.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Department of Biological SciencesSouthern Methodist UniversityDallas

Personalised recommendations