Advertisement

Journal of Bioenergetics and Biomembranes

, Volume 37, Issue 6, pp 419–423 | Cite as

Interactions Between Vacuolar H+-ATPases and Microfilaments in Osteoclasts

  • L. Shannon Holliday
  • Michael R. Bubb
  • Jin Jiang
  • I. Rita Hurst
  • Jian Zuo
Article

 

Vacuolar H+-ATPases (V-ATPases) are transported from cytosolic compartments to the ruffled plasma membrane of osteoclasts as they activate to resorb bone. Transport of V-ATPases is essential for bone resorption, and is associated with binding interactions between V-ATPases and microfilaments that are mediated by an actin-binding site in subunit B. This site is contained within 44 amino acids in the amino terminal domain, and requires a sequence motif that resembles an actin-binding motif found in mammalian profilin 1. Small alterations in the profilin-like sequence disrupt the actin-binding activity of subunit B. The interaction between V-ATPases and microfilaments in osteoclasts is regulated in response to changes in phosphatidylinositol-3 kinase activity. During internalization of V-ATPases from the plasma membrane of osteoclasts after a cycle of resorption, V-ATPases bind microfilaments that are in podosomes, dynamic actin-based structures, also present in metastatic cancer cells. Studies are ongoing to establish the physiological role of the microfilament-binding activity of subunit B in osteoclasts and in other cells.

Key Words

V-ATPase actin bone ruffled membranes membrane trafficking phosphatidylinositol 3-kinase actin-related protein 2/3 complex PI 3-kinase cortactin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Biswas, R. S., Baker, D., Hruska, K. A., and Chellaiah, M. A. (2004). BMC Cell Biol. 5, 19.CrossRefGoogle Scholar
  2. Blair, H. C., Teitelbaum, S. L., Ghiselli, R., and Gluck, S. (1989). Science 245, 855–857.Google Scholar
  3. Cao, H., Weller, S., Orth, J. D., Chen, J., Huang, B., Chen, J. L., Stamnes, M., and McNiven, M. A. (2005). Nat. Cell Biol. 7, 483–492.CrossRefGoogle Scholar
  4. Chellaiah, M. A., Biswas, R. S., Yuen, D., Alvarez, U. M., and Hruska, K. A. (2001). 276, 47434–47444.Google Scholar
  5. Chen, S. H., Bubb, M. R., Yarmola, E. G., Zuo, J., Jiang, J., Lee, B. S., Lu, M., Gluck, S. L., Hurst, I. R., and Holliday, L. S. (2004). J. Biol. Chem. 279, 7988–7998.CrossRefGoogle Scholar
  6. DeMali, K. A., Wennerberg, K., and Burridge, K. (2003). Curr. Opin. Cell Biol. 15, 572–582.CrossRefGoogle Scholar
  7. Destaing, O., Saltel, F., Geminard, J. C., Jurdic, P., and Bard, F. (2003). Mol. Biol. Cell 14, 407–416.CrossRefGoogle Scholar
  8. Drory, O., Frolow, F., and Nelson, N. (2004). EMBO Rep. 5, 1148–1152.CrossRefGoogle Scholar
  9. Feng, X., Novack, D. V., Faccio, R., Ory, D. S., Aya, K., Boyer, M. I., McHugh, K. P., Ross, F. P., and Teitelbaum, S. L. (2001). J. Clin. Invest. 107, 1137–1144.CrossRefGoogle Scholar
  10. Gluck, S. L., Lee, B. S., Wang, S. P., Underhill, D., Nemoto, J., and Holliday, L. S. (1998). Acta Physiol. Scand. Suppl. 643, 203–212.Google Scholar
  11. Gluck, S. L., Underhill, D. M., Iyori, M., Holliday, L. S., Kostrominova, T. Y., and Lee, B. S. (1996). Annu. Rev. Physiol. 58, 427–445.CrossRefGoogle Scholar
  12. Gundelfinger, E. D., Kessels, M. M., and Qualmann, B. (2003). Nat. Rev. Mol. Cell Biol. 4, 127–139.CrossRefGoogle Scholar
  13. Holliday, L. S., Lu, M., Lee, B. S., Nelson, R. D., Solivan, S., Zhang, L., and Gluck, S. L. (2000). J. Biol. Chem. 275, 32331–32337.CrossRefGoogle Scholar
  14. Holliday, L. S., Welgus, H. G., Fliszar, C. J., Veith, G. M., Jeffrey, J. J., and Gluck, S. L. (1997). J. Biol. Chem. 272, 22053–22058.CrossRefGoogle Scholar
  15. Holliday, L. S., Welgus, H. G., Hanna, J., Lee, B. S., Lu, M., Jeffrey, J. J., and Gluck, S. L. (2003). Calcif. Tissue Int. 72, 206–214.CrossRefGoogle Scholar
  16. Hurst, I. R., Zuo, J., Jiang, J., and Holliday, L. S. (2004). J. Bone Miner. Res. 19, 499–506.CrossRefGoogle Scholar
  17. King, G. J., and Holtrop, M. E. (1975). J. Cell Biol. 66, 445–451.CrossRefGoogle Scholar
  18. Lee, B. S., Gluck, S. L., and Holliday, L. S. (1999a). J. Biol. Chem. 274, 29164–29171.CrossRefGoogle Scholar
  19. Lee, B. S., Holliday, L. S., Krits, I., and Gluck, S. L. (1999b). J. Bone Miner. Res. 14, 2127–2136.CrossRefGoogle Scholar
  20. Linder, S., and Aepfelbacher, M. (2003). Trends Cell Biol. 13, 376–385.CrossRefGoogle Scholar
  21. Machesky, L. M., and Bornens, M. (2003). Curr. Opin. Cell Biol. 15, 2–5.CrossRefGoogle Scholar
  22. McHugh, K. P., Hodivala-Dilke, K., Zheng, M. H., Namba, N., Lam, J., Novack, D., Feng, X., Ross, F. P., Hynes, R. O., and Teitelbaum, S. L. (2000). J. Clin. Invest. 105, 433–440.Google Scholar
  23. McNiven, M. A., Baldassarre, M., and Buccione, R. (2004). Front. Biosci. 9, 1944–1953.Google Scholar
  24. Nakamura, I., Sasaki, T., Tanaka, S., Takahashi, N., Jimi, E., Kurokawa, T., Kita, Y., Ihara, S., Suda, T., and Fukui, Y. (1997). J. Cell Physiol. 172, 230–239.CrossRefGoogle Scholar
  25. Nishi, T., and Forgac, M. (2002). Nat. Rev. Mol. Cell Biol. 3, 94–103.CrossRefGoogle Scholar
  26. Ross, F. P., Chappel, J., Alvarez, J. I., Sander, D., Butler, W. T., Farach-Carson, M. C., Mintz, K. A., Robey, P. G., Teitelbaum, S. L., and Cheresh, D. A. (1993). J. Biol. Chem. 268, 9901–9907.Google Scholar
  27. Saltel, F., Destaing, O., Bard, F., Eichert, D., and Jurdic, P. (2004). Mol. Biol. Cell 15, 5231–5241.CrossRefGoogle Scholar
  28. Schafer, D. A., Weed, S. A., Binns, D., Karginov, A. V., Parsons, J. T., and Cooper, J. A. (2002). Curr. Biol. 12, 1852–1857.CrossRefGoogle Scholar
  29. Schluter, K., Schleicher, M., and Jockusch, B. M. (1998). J. Cell Sci. 111(Pt 22), 3261–3273.Google Scholar
  30. Smith, A. N., Borthwick, K. J., and Karet, F. E. (2002). Gene 297, 169–177.CrossRefGoogle Scholar
  31. Sun-Wada, G. H., Wada, Y., and Futai, M. (2004). Biochim. Biophys. Acta 1658, 106–114.CrossRefGoogle Scholar
  32. Teti, A., Barattolo, R., Grano, M., Colucci, S., Argentino, L., Teitelbaum, S. L., Hruska, K. A., Santacroce, G., and Zambonin, Z. A. (1989). Boll. Soc. Ital. Biol. Sper. 65, 1039–1043.Google Scholar
  33. Toyomura, T., Oka, T., Yamaguchi, C., Wada, Y., and Futai, M. (2000). J. Biol. Chem. 275, 8760–8765.CrossRefGoogle Scholar
  34. Vaananen, H. K., Karhukorpi, E. K., Sundquist, K., Wallmark, B., Roininen, I., Hentunen, T., Tuukkanen, J., and Lakkakorpi, P. (1990). J. Cell Biol. 111, 1305–1311.CrossRefGoogle Scholar
  35. Vaananen, H. K., Zhao, H., Mulari, M., and Halleen, J. M. (2000). J. Cell Sci. 113(Pt 3), 377–381.Google Scholar
  36. Vitavska, O., Merzendorfer, H., and Wieczorek, H. (2005). J. Biol. Chem. 280, 1070–1076.CrossRefGoogle Scholar
  37. Vitavska, O., Wieczorek, H., and Merzendorfer, H. (2003). J. Biol. Chem. 278, 18499–18505.CrossRefGoogle Scholar
  38. Wagner, C. A., Finberg, K. E., Breton, S., Marshansky, V., Brown, D., and Geibel, J. P. (2004). Physiol. Rev. 84, 1263–1314.CrossRefGoogle Scholar
  39. Weaver, A. M., Karginov, A. V., Kinley, A. W., Weed, S. A., Li, Y., Parsons, J. T., and Cooper, J. A. (2001). Curr. Biol. 11, 370–374.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • L. Shannon Holliday
    • 1
    • 4
    • 5
  • Michael R. Bubb
    • 2
  • Jin Jiang
    • 3
  • I. Rita Hurst
    • 1
  • Jian Zuo
    • 1
  1. 1.Department of OrthodonticsUniversity of Florida College of DentistryGainesville
  2. 2.Malcom Randall VA Medical CenterGainesville
  3. 3.University of Connecticut Health Science CenterFarmington
  4. 4.Department of Anatomy & Cell BiologyUniversity of Florida College of MedicineGainesville
  5. 5.Department of OrthodonticsUniversity of Florida College of DentistryGainesville

Personalised recommendations