Journal of Bioenergetics and Biomembranes

, Volume 37, Issue 4, pp 269–278 | Cite as

Sodium, Potassium-ATPases in Algae and Oomycetes

  • Javier Barrero-Gil
  • Blanca Garciadeblás
  • Begoña Benito


We have investigated the presence of K+-transporting ATPases that belong to the phylogenetic group of animal Na+,K+-ATPases in the Pythium aphanidermatum Stramenopile oomycete, the Porphyra yezoensis red alga, and the Udotea petiolata green alga, by molecular cloning and expression in heterologous systems. PCR amplification and search in EST databases allowed one gene to be identified in each species that could encode ATPases of this type. Phylogenetic analysis of the sequences of these ATPases revealed that they cluster with ATPases of animal origin, and that the algal ATPases are closer to animal ATPases than the oomycete ATPase is. The P. yezoensis and P. aphanidermatum ATPases were functionally expressed in Saccharomyces cerevisiae and Escherichia coli alkali cation transport mutants. The aforementioned cloning and complementary searches in silicio for H+- and Na+,K+-ATPases revealed a great diversity of strategies for plasma membrane energization in eukaryotic cells different from typical animal, plant, and fungal cells.


Potassium sodium proton ATPase algae oomycetes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Axelsen, K. B., and Palmgren, M. G. (1998). J. Mol. Evol. 46, 84–101.PubMedGoogle Scholar
  2. Bañuelos, M. A., Ramos, J., Calero, F., Braun, V., and Potier, S. (2002). Yeast 19, 1365–1372.CrossRefPubMedGoogle Scholar
  3. Bañuelos, M. A., Synchrová, H., Bleykasten-Grosshans, C., Souciet, J.-L., and Potier, S. (1998). Microbiology 144, 2749–2758.PubMedGoogle Scholar
  4. Benito, B., Garciadeblás, B., and Rodríguez-Navarro, A. (2000). Mol. Microbiol. 35, 1079–1088.CrossRefPubMedGoogle Scholar
  5. Benito, B., Garciadeblás, B., and Rodríguez-Navarro, A. (2002). Microbiology 148, 933–941.PubMedGoogle Scholar
  6. Benito, B., Garciadeblás, B., Schreier, P., and Rodríguez-Navarro, A. (2004). Eukaryot. Cell 3, 359–368.CrossRefPubMedGoogle Scholar
  7. Benito, B., and Rodríguez-Navarro, A. (2003). Plant J. 36, 382–389.CrossRefPubMedGoogle Scholar
  8. Brunelli, J. P., and Pall, M. L. (1993). Yeast 9, 1309–1318.CrossRefPubMedGoogle Scholar
  9. Brunt, J. F., Caldwell, J. H., and Harold, F. M. (1982). J. Bacteriol. 150, 1449–1461.PubMedGoogle Scholar
  10. Burger, G., Saint-Louis, D., Gray, M. W., and Lang, B. F. (1999). Plant Cell 11, 1675–1694.CrossRefPubMedGoogle Scholar
  11. Burnay, M., Crambert, G., Kharoubi-Hess, S., Geering, K., and Horisberger, J.-D. (2003). J. Biol. Chem. 278, 19237–19244.CrossRefPubMedGoogle Scholar
  12. Campbell, A. M., Coble, A. J., Cohen, L. D., Ch’ng, T. H., Russo, K. M., Long, E. M., and Armburst, E. V. (2001). J. Phycol. 37, 536–542.CrossRefGoogle Scholar
  13. Coukell, M. B., Moniakis, J., and Cameron, A. M. (1997). Microbiology 143, 3877–3888.PubMedGoogle Scholar
  14. Escassi, L., Aguilera, J., Figueroa, F. L., and Fernández, J. A. (2002). Planta 214, 759–766.CrossRefPubMedGoogle Scholar
  15. Fietto, L. G., Pugliese, L., and Gomes, S. L. (2002). Biochim. Biophys. Acta 1576, 59–69.PubMedGoogle Scholar
  16. Garciadeblas, B., Benito, B., and Rodríguez-Navarro, A. (2001). Plant Soil 235, 181–192.CrossRefGoogle Scholar
  17. Garciadeblas, B., Benito, B., and Rodríguez-Navarro, A. (2002). Plant Mol. Biol. 50, 623–633.CrossRefPubMedGoogle Scholar
  18. Guzman, L.-M., Belin, D., Carson, M. J., and Beckwith, J. (1995). J. Bacteriol. 177, 4121–4130.PubMedGoogle Scholar
  19. Haro, R., Garciadeblas, B., and Rodríguez-Navarro, A. (1991). FEBS Lett. 291, 189–191.CrossRefPubMedGoogle Scholar
  20. Haro, R., Sainz, L., Rubio, F., and Rodríguez-Navarro, A. (1999). Mol. Microbiol. 31, 511–520.CrossRefPubMedGoogle Scholar
  21. Jorgensen, P. L., and Pedersen, P. A. (2001). Biochim. Biophys. Acta 1505, 57–74.PubMedGoogle Scholar
  22. Kaplan, J. H. (2002). Annu. Rev. Biochem. 71, 511–535.CrossRefPubMedGoogle Scholar
  23. Katz, A., and Pick, U. (2001). Biochim. Biophys. Acta 1504, 423–431.PubMedGoogle Scholar
  24. Krishna, S., Woodrow, C., Webb, R., Penny, J., Takeyasu, K., Kimura, M., and East, J. M. (2001). J. Biol. Chem. 276, 10782–10787.CrossRefPubMedGoogle Scholar
  25. Latijnhouwers, M., Wit, P. J. G. M. d., and Govers, F. (2003). Trends Microbiol. 11, 462–469.CrossRefPubMedGoogle Scholar
  26. Madrid, R., Gómez, M. J., Ramos, J., and Rodríguez-Navarro, A. (1998). J. Biol. Chem. 273, 14838–14844.CrossRefPubMedGoogle Scholar
  27. Ohta, H., Shirakawa, H., Uchida, K., Yoshida, M., Matou, Y., and Enami, I. (1997). Biochim. Biophys. Acta 1319, 9–13.PubMedGoogle Scholar
  28. Pedersen, P. A., Nielsen, J. M., Rasmussen, J. H., and Jorgensen, P. L. (1998). Biochemistry 37, 7818–7827.CrossRefGoogle Scholar
  29. Rodríguez-Navarro, A. (2000). Biochim. Biophys. Acta 1469, 1–30.PubMedGoogle Scholar
  30. Rodríguez-Navarro, A., and Ramos, J. (1984). J. Bacteriol. 159, 940–945.PubMedGoogle Scholar
  31. Santa-María, G. E., Rubio, F., Dubcovsky, J., and Rodríguez-Navarro, A. (1997). Plant Cell 9, 2281–2289.CrossRefPubMedGoogle Scholar
  32. Senn, M. E., Rubio, F., Bañuelos, M. A., and Rodríguez-Navarro, A. (2001). J. Biol. Chem. 276, 44563–44569.CrossRefPubMedGoogle Scholar
  33. Shono, M., Hara, Y., Wada, M., and Fujii, T. (1996). Plant Cell Physiol. 37, 385–388.Google Scholar
  34. Shono, M., Wada, M., and Fujii, T. (1995). Plant Physiol. 108, 1615–1621.PubMedGoogle Scholar
  35. Shono, M., Wada, M., and Fujii, T. (1998). In 11th International Workshop on Plant Membrane Biolog (Tester, M., Morris, C., and Davies, J., eds.), The Society for Experimental Biology, Cambridge, UK, p. 15.Google Scholar
  36. Shono, M., Wada, M., Hara, Y., and Fujii, T. (2001). Biochim. Biophys. Acta 1511, 193–199.PubMedGoogle Scholar
  37. Stump, R. F., Robinson, K. R., Harold, R. L., and Harold, F. M. (1980). Proc. Natl. Acad. Sci. U.S.A. 77, 6673–6677.PubMedGoogle Scholar
  38. Turmel, M., Ehara, M., Otis, C., and Lemieux, C. (2002). J. Phycol. 38, 364–375.CrossRefGoogle Scholar
  39. Van-de-Peer, Y., and Wachter, R. D. (1997). J. Mol. Evol. 45, 619–630.PubMedGoogle Scholar
  40. Wada, M., Hirokawa, A., Fukumoto, R., and Shono, M. (1996). J. Phycol. 32, 868–872.CrossRefGoogle Scholar
  41. Wada, M., Shono, M., Urayama, O., Satoh, S., Hara, Y., Ikawa, Y., and Fujii, T. (1994). Plant Mol. Biol. 26, 699–708.CrossRefPubMedGoogle Scholar
  42. Weiss, M., and Pick, U. (1996). Plant Physiol. 112, 1693–1702.CrossRefPubMedGoogle Scholar
  43. Wolf, A. H., Slayman, C. W., and Gradmann, D. (1995). Plant Mol. Biol. 28, 657–666.CrossRefPubMedGoogle Scholar
  44. Yokoi, S., Quintero, F. J., Cubero, B., Ruiz, M. T., Bressan, R. A., Hasegawa, P. M., and Pardo, J. M. (2002). Plant J. 30, 529–539.CrossRefPubMedGoogle Scholar
  45. Zhu, J. K. (2003). Curr. Opin. Plant Biol. 6, 441–445.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Javier Barrero-Gil
    • 1
  • Blanca Garciadeblás
    • 1
  • Begoña Benito
    • 1
  1. 1.Departamento de Biotecnología, Escuela Técnica Superior de Ingenieros AgrónomosUniversidad Politécnica de MadridMadridSpain

Personalised recommendations