Journal of Bioenergetics and Biomembranes

, Volume 37, Issue 4, pp 261–268 | Cite as

An Inception Report on the TOM Complex of the Amoeba Acanthamoeba castellanii, a Simple Model Protozoan in Mitochondria Studies

  • Malgorzata Wojtkowska
  • Natalia Szczech
  • Olgierd Stobienia
  • Wieslawa Jarmuszkiewicz
  • Małgorzata Budzinska
  • Hanna Kmita


It is suggested that in the course of the TOM complex evolution at least two lineages have appeared: the animal–fungal and green plant ones. The latter involves also the TOM complexes of algae and protozoans. The amoeba Acanthamoeba castellanii is a free-living nonphotosynthetic soil protozoan, whose mitochondria share many bioenergetic properties with mitochondria of plants, animals and fungi. Here, we report that a protein complex, identified electrophysiologically as the A. castellanii TOM complex, contains a homologue of yeast/animal Tom70. Further, molecular weight of the complex (about 500 kDa) also points to A. castellanii evolutionary relation with fungi and animal. Thus, the data indicates that the TOM complex of A. castellanii is not a typical example of the protozoan TOM complex.


Acanthamoeba castellanii TOM complex Tom70 



n-dodecyl β-d-maltoside


dihydrofolate reductase


electrospray ionization tandem mass spectrometry


matrix-assisted laser desorption/ionization mass spectrometry


4-morpholinopropanesulfonic acid


translocase of the outer membrane


voltage-dependent anion-selective channel


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahting, U., Thieffry, M., Engelhardt, H., Hegerl, R., Neupert, W., and Nussberger, S. (2001). J. Cell Biol. 153, 1151–1160.CrossRefPubMedGoogle Scholar
  2. Ahting, U., Thun, C., Hegerl, R., Typke, D., Nargang, F. E., Neupert, W., and Nussberger, S. (1999). J. Cell Biol. 147, 959–968.CrossRefPubMedGoogle Scholar
  3. Antos, N., Budzinska, M., and Kmita, H. (2001). FEBS Lett. 500, 12–16.CrossRefPubMedGoogle Scholar
  4. Benz, R. (1994). Biochim. Biophys. Acta 1197, 167–196.PubMedGoogle Scholar
  5. Benz, R., Janko, K., Boos, W., and Lauger, P. (1978). Biochim. Biophys. Acta 511, 305–319.PubMedGoogle Scholar
  6. Blachly-Dyson, E., Song, J., Wolfgang, W. J., Colombini, M., and Forte, M. (1997). Mol. Cell. Biol. 17, 5727–5738.PubMedGoogle Scholar
  7. Braun, H. P., and Schmitz, U. K. (1998). Planta 209, 267–274.CrossRefGoogle Scholar
  8. Burger, G., Lang, B. F., Braun, H. P., and Marx, S. (2003). Nucleic Acids Res. 31, 2353–2360.CrossRefPubMedGoogle Scholar
  9. Das, A. K., Cohen, P. W., and Barford, D. (1998). EMBO J. 17, 1192–1199.CrossRefPubMedGoogle Scholar
  10. Daum, G., Bohni, P. C., and Schatz, G. (1982). J. Biol. Chem. 257, 13028–13033.PubMedGoogle Scholar
  11. De Pinto, V., Ludwig, O., Krause, J., Benz, R., and Palmieri, F. (1987). Biochim. Biophys. Acta 894, 109–119.PubMedGoogle Scholar
  12. Dekker, P. J. T., Ryan, M. T., Brix, J., Müller, A., Hönlinger, A., and Pfanner, N. (1998). Mol. Cell. Biol. 18, 6515–6524.PubMedGoogle Scholar
  13. Douce, R., Bourguignon, R., and Neuberger, M. (1984). Methods Enzymol. 148, 403–415.Google Scholar
  14. Gabriel, K., Egan, B., and Lithgow, T. (2003). EMBO J. 22, 2380–2386.CrossRefPubMedGoogle Scholar
  15. Gray, M. W., Burger, G., and Lang, B. F. (1999). Science 382, 1476–1481.CrossRefGoogle Scholar
  16. Hill, K., Model, K., Ryan, M. T., Dietmeier, K., Martin, F., Wagner, R., and Pfanner, N. (1998). Nature 395, 516–521.CrossRefPubMedGoogle Scholar
  17. Hoogenraad, N. J., Ward, L. A., and Ryan, M. T. (2002). Biochim. Biophys. Acta 1592, 97–105.CrossRefPubMedGoogle Scholar
  18. Jänsch, L., Kruft, V., Schmitz, U. K., and Braun, H. P. (1998). J. Biol. Chem. 273, 17251–17257.CrossRefPubMedGoogle Scholar
  19. Jarmuszkiewicz, W., Sluse-Goffart, C. M., Vercesi, A. E., and Sluse, F. E. (2001). Biosci. Rep. 21, 213–222.CrossRefPubMedGoogle Scholar
  20. Jarmuszkiewicz, W., Wagner, A. M., Wagner, M. J., and Hryniewiecka, L. (1997). FEBS Lett. 411, 110–114.CrossRefPubMedGoogle Scholar
  21. Kamo, N., Muratsugu, M., Hongoh, R., and Kobatake, Y. J. (1979). J. Membr. Biol. 49, 105–121.CrossRefPubMedGoogle Scholar
  22. Künkele, K.-P., Heins, S., Dembowski, M., Nargang, F. E., Benz, R., Thieffry, M., Walz, J., Lill, R., Nussberger, S., and Neupert, W. (1998a). Cell 93, 1009–1019.CrossRefGoogle Scholar
  23. Künkele, K.-P., Juin, P., Pompa, C., Nargang, F. E., Henry, J.-P., Neupert, W., Lill, R., and Thieffry, M. (1998b). J. Biol. Chem. 273, 31032–31039.CrossRefGoogle Scholar
  24. Lee, A. C., Xu, X., Blachly-Dyson, E., Forte, M., and Colombini, M. (1998). J. Membr. Biol. 161, 173–181.CrossRefPubMedGoogle Scholar
  25. Lill, R., and Neupert, W. (1996). Trends Cell. Biol. 6, 56–61.CrossRefPubMedGoogle Scholar
  26. Macasev, D., Newbigin, E., Whelan, J., and Lithgow, T. (2000). Plant Physiol. 123, 811–816.CrossRefPubMedGoogle Scholar
  27. Macasev, D., Whelan, J., Newbigin, E., Silva-Filho, M. C., Mulhern, T. D., and Lithgow, T. (2004). Mol. Biol. Evol. 21, 1557–1564.CrossRefPubMedGoogle Scholar
  28. Mangan, P. S., and Colombini, M. (1987). Proc Natl Acad Sci USA 84, 4896–900.PubMedGoogle Scholar
  29. Meisinger, C., Brix, J., Model, K., Pfanner, N., and Ryan, M. T. (1999). Cell. Mol. Life Sci. 56, 817–824.CrossRefPubMedGoogle Scholar
  30. Meisinger, C., Ryan, M. T., Hill, K., Model, K., Lim, J. H., Sickmann, A., Müller, H., Meyer, H. E., Wagner, R., and Pfanner, N. (2001). Mol. Cell. Biol. 21, 2337–2348.CrossRefPubMedGoogle Scholar
  31. Model, K., Prinz, T., Ruiz, T., Radermacher, M., Krimmer, T., Kühlbrandt, W., Pfanner, N., and Meisinger, C. (2002). J. Mol. Biol. 316, 657–666.CrossRefPubMedGoogle Scholar
  32. Mori, M., and Terada, K. (1998). Biochim. Biophys. Acta 1403, 12–27.CrossRefPubMedGoogle Scholar
  33. Neff, R. J., and Neff, R. H. (1964). In Methods in Cell Physiology, (Prescott, D., ed.), Academic Press, New York, pp. 213–245.Google Scholar
  34. Paschen, S. A., and Neupert, W. (2001). IUBMB Life 52, 101–112.PubMedGoogle Scholar
  35. Pfanner, N., and Chacinska, A. (2002). Biochim. Biohys. Acta 1592, 15–24.CrossRefGoogle Scholar
  36. Rapaport, D. (2002). Trends Biochem. Sci. 27, 191–197.CrossRefPubMedGoogle Scholar
  37. Rehling, P., Pfanner, N., and Meisinger, C. (2003). J. Miol. Biol. 326, 639–657.CrossRefGoogle Scholar
  38. Saeki, K., Suzuki, H., Tsuneoka, M., Maeda, M., Iwamoto, R., Hasuwa, H., Shida, S., Takahashi, T., Sakaguchi, M., Endo, T., Miura, Y., Mekada, E., and Mihara, K. (2000). J. Biol. Chem. 275, 31996–32002.CrossRefPubMedGoogle Scholar
  39. Sickmann, A., Reinders, J., Wagner, Y., Joppich, C., Zahedi, R., Meyer, H. E., Schönfisch, B., Perschil, I., Chacinska, A., Guiard, B., Rehling, P., Pfanner, N., and Meisinger, C. (2003). Proc. Nat. Acad. Sci. 100, 13207–13212.CrossRefPubMedGoogle Scholar
  40. Sluse, F. E. and Jarmuszkiewicz, W. (2001). In Handbook of plant growth: pH as the master variable, (Rengel., Z., ed.), Marcel Dekker, Inc., New York, Basel, pp. 173–209.Google Scholar
  41. Stobienia, O., Wróblewska, S., Antos, N., Budzińska, M., and Kmita, H. (2002). J. Bioenerg. Biomembr. 34, 507–516.CrossRefPubMedGoogle Scholar
  42. Suzuki, H., Maeda, M., and Mihara, K. (2002). J. Cell. Sci. 115, 1895–1905.CrossRefPubMedGoogle Scholar
  43. Suzuki, H., Okazawa, Y., Komiya, T., Saeki, K., Mekada, E., Kitada, S., Ito, A., and Mihara, K. (2000). J. Biol. Chem. 275, 37930–37936.CrossRefPubMedGoogle Scholar
  44. Taylor, R. D., McHale, B. J., and Nargang, F. E. (2003). J. Biol. Chem. 278, 765–775.CrossRefPubMedGoogle Scholar
  45. Terada, K., Ueno, S., Yomogida, K., Imai, T., Kiyonari, H., Tekada, N., Abe, S., Aizawa, S., and Mori, M. (2003). J. Biochem. 133, 625–631.CrossRefPubMedGoogle Scholar
  46. Van Wilpe, S., Ryan, M. T., Hill, K., Maarse, A. C., Meisinger, C., Brix, J., Dekker, P. J., Moczko, M., Wagner, R., Meijer, M., Guiard, B., Hönlinger, A., and Pfanner, N. (1999). Nature 401, 485–489.CrossRefPubMedGoogle Scholar
  47. Wainright, P. O., Hinkle, G., Sogin, M. L., and Stickel, S. K. (1993). Science 260, 340–342.PubMedGoogle Scholar
  48. Werhahn, W., and Braun, H. P. (2002). Electrophoresis 23, 640–646.CrossRefPubMedGoogle Scholar
  49. Werhahn, W., Niemeyer, A., Jänsch, L., Kruft, V., Schmitz, U. K., and Braun, H. P. (2001). Plant Physiol. 125, 943–954.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Malgorzata Wojtkowska
    • 1
  • Natalia Szczech
    • 1
  • Olgierd Stobienia
    • 1
  • Wieslawa Jarmuszkiewicz
    • 1
  • Małgorzata Budzinska
    • 1
  • Hanna Kmita
    • 1
    • 2
  1. 1.Laboratory of Bioenergetics, Institute of Molecular Biology and BiotechnologyAdam Mickiewicz UniversityPoznanPoland
  2. 2.Laboratory of Bioenergetics, Institute of Molecular Biology and BiotechnologyAdam Mickiewicz UniversityPoznanPoland

Personalised recommendations