Journal of Bioenergetics and Biomembranes

, Volume 37, Issue 4, pp 227–236 | Cite as

Sphingosine Forms Channels in Membranes That Differ Greatly from Those Formed by Ceramide

  • Leah J. Siskind
  • Sharon Fluss
  • Minh Bui
  • Marco Colombini


Ceramide channels formed in the outer membrane of mitochondria have been proposed to be the pathways by which proapoptotic proteins are released from mitochondria during the early stages of apoptosis. We report that sphingosine also forms channels in membranes, but these differ greatly from the large oligomeric barrel-stave channels formed by ceramide. Sphingosine channels have short open lifetimes and have diameters less than 2 nm, whereas ceramide channels have long open lifetimes, enlarge in size reaching diameters in excess of 10 nm. Unlike ceramide, sphingosine forms channels in erythrocyte plasma membranes that vary in size with concentration, but with a maximum possible channel diameter of 2 nm. In isolated mitochondria, a large proportion of the added sphingosine was rapidly metabolized to ceramide in the absence of externally added fatty acids or fatty-acyl-CoAs. The ceramide synthase inhibitor, fumonisin B1 failed to prevent sphingosine metabolism to ceramide and actually increased it. However, partial inhibition of conversion to ceramide was achieved in the presence of ceramidase inhibitors, indicating that reverse ceramidase activity is at least partially responsible for sphingosine metabolism to ceramide. A small amount of cytochrome c release was detected. It correlated with the level of ceramide converted from sphingosine. Thus, sphingosine channels, unlike ceramide channels, are not large enough to allow the passage of proapoptotic proteins from the intermembrane space of mitochondria to the cytoplasm.


Mitochondria apoptosis sphingolipids ion channels ceramidase ceramide synthase sphingosine ceramide 



apoptosis inducing factor


mitochondrial apoptosis-induced channel








fumonisin B1






bovine serum albumin




piperazine-N,N′-bis[2-ethanesulfonic acid]


thin layer chromatography




permeability transition


voltage dependent anion-selective channel


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Antonsson, B., Montessuit, S., Lauper, S., Eskes, R., and Martinou, J. C. (2000). Biochem. J. 345, 271–278.CrossRefPubMedGoogle Scholar
  2. Antonsson, B., Montessuit, S., Sanchez, B., and Martinou, J. C. (2001). J. Biol. Chem. 276, 11615–11623.CrossRefPubMedGoogle Scholar
  3. Basañez, G., Nechushtan, A., Drozhinin, O., Chanturiya, A., Choe, E., Tutt, S., Wood, K. A., Hsu, Y.-T., Zimmerburg, J., and Youle, R. J. (1999). Proc. Natl. Acad. Sci. U.S.A. 96, 5492–5497.CrossRefPubMedGoogle Scholar
  4. Bionda, C., Portoukalian, J., Schmitt, D., Rodriguez-Lafrasse, C., and Ardail, D. (2004). Biochem. J. 382, 527–533.PubMedGoogle Scholar
  5. Bligh, E. A., and Dyer, W. J. (1959). Can. J. Biochem. Physiol. 37, 911–917.PubMedGoogle Scholar
  6. Bose, R., Verheij, M., Haimovitz-Friedman, A., Scotto, K., Fuks, Z., and Kolesnick, R. N. (1995). Cell 82, 405–414.CrossRefPubMedGoogle Scholar
  7. Chai, J., Shiozaki, E., Srinivasula, S. M., Wu, Q., Datta, P., Alnemri, E. S., Shi, Y., and Dataa, P. (2001). Cell 104, 769–780.CrossRefPubMedGoogle Scholar
  8. Charles, A. G., Han, T. Y., Liu, Y. Y., Hansen, N., Giuliano, A. E., and Cabot, M. C. (2001). Cancer Chemother. Pharmacol. 47, 444–450.CrossRefPubMedGoogle Scholar
  9. Colombini, M. (1987). Methods Enzymol. 148, 465–475.PubMedGoogle Scholar
  10. Crompton, M. (1999). Biochem. J. 342, 233–249.CrossRefGoogle Scholar
  11. Cuvillier, O. (2002). Biochim. Biophys. Acta 1585, 153–162.PubMedGoogle Scholar
  12. Cuvillier, O., Edsall, R. L., and Spiegel, S. (2000). J. Biol. Chem. 275, 15691–15700.CrossRefPubMedGoogle Scholar
  13. Cuvillier, O., Nava, V. E., Murthy, S. K., Edsall, L. C., Levade, T., Milstien, S., and Spiegel, S. (2001). Cell Death Differ. 8, 162–171.CrossRefPubMedGoogle Scholar
  14. Dickerson, R. E., Takano, T., Eisenberg, D., Kallai, O. B., Samson, L., Cooper, A., and Margoliash, E. (1971). J. Biol. Chem. 246, 1511.PubMedGoogle Scholar
  15. El Bawab, S., Roddy, P., Qian, T., Bielawska, A., Lemasters, J. J., and Hannun, Y. A. (2000). J. Biol. Chem. 275, 21508–21513.CrossRefPubMedGoogle Scholar
  16. Geley, S., Hartmann, B. L., and Kofler, R. (1997). FEBS Lett. 400, 15–18.CrossRefPubMedGoogle Scholar
  17. Ghafourifar, P., Klein, S. D., Schucht, O., Schenk, U., Pruschy, M., Rocha, S., and Richter, C. (1999). J. Biol. Chem. 274, 6080–6084.CrossRefPubMedGoogle Scholar
  18. Gottschalk, A., Boise, L., Thompson, C., and Quintáns, J. (1994). Proc. Natl. Acad. Sci. U.S.A. 91, 7350–7354.PubMedGoogle Scholar
  19. Hung, W.-C., Chang, H.-C., and Chuang, L.-Y. (1999). Biochem. J. 338, 161–166.CrossRefPubMedGoogle Scholar
  20. Igisu, H., Hamasaki, N., Ito, A., and Ou, W. (1988). Lipids. 23, 345–348.PubMedGoogle Scholar
  21. Jarvis, W. D., Fornari, F. A. Jr., Traylor, R. S., Martin, H. A., Kramer, L. B., Erukulla, R. K., Bittman, R., and Grant, S. (1996). J. Biol. Chem. 271, 8275–8284.CrossRefPubMedGoogle Scholar
  22. Kroesen, B.-J., Pettus, B., Luberto, C., Busman, M., Sietsma, H., Leij, L. D., and Hannun, Y. A. (2001). J. Biol. Chem. 276, 13606–13614.PubMedGoogle Scholar
  23. Kuga, S. (1981). J. Chromatogr. 206, 449–461.CrossRefGoogle Scholar
  24. Kuwana, T., Mackey, M. R., Perkins, G., Ellisman, M. H., Latterich, M., Schneiter, R., Green, D. R., and Newmeyer, D. D. (2002). Cell 111, 331–342.CrossRefPubMedGoogle Scholar
  25. Mate, M. J., Ortiz-Lombardia, M., Boitel, B., Haouz, A., Tello, D., Susin, S. A., Penninger, J., Kroemer, G., and Alzari, P. M. (2002). Nat. Struct. Biol. 9, 442–446.CrossRefPubMedGoogle Scholar
  26. Montal, M., and Mueller, P. (1972). Proc. Natl. Acad. Sci. U.S.A. 69, 3561–3566.PubMedGoogle Scholar
  27. Nava, V. E., Cuvillier, O., Edsall, L. C., Kimura, K., Milstien, S., Gelmann, E. P., and Spiegel, S. (2000). Cancer Res. 60, 4468–4474.PubMedGoogle Scholar
  28. Ohta, H., Sweeney, E. A., Masamune, A., Yatomi, Y., Hakomori, S., andIgarashi, Y. (1995). Cancer Res. 55, 691–697.PubMedGoogle Scholar
  29. Okino, N., He, X., Gatt, S., Sandhoff, K., Ito, M., and Schuchman, E. H. (2003). J. Biol. Chem. 278, 29948–29953.CrossRefPubMedGoogle Scholar
  30. Pavlov, E. V., Priault, M., Pietkiewicz, D., Cheng, E. H.-Y., Antonsson, B., Manon, S., Korsmeyer, S. J., Mannella, C. A., and Kinnally, K. W. (2001). J. Cell Biol. 155, 725–731.CrossRefPubMedGoogle Scholar
  31. Perry, D. K., Carton, J., Shah, A. K., Meredith, F., Uhlinger, D. J., and Hannun, Y. A. (2000). J. Biol. Chem. 275, 9078–9084.CrossRefPubMedGoogle Scholar
  32. Raisova, M., Bektas, M., Wieder, T., Daniel, P., Eberle, P., Orfanos, C. E., and Geilen, C. C. (2000). FEBS Lett. 473, 27–32.CrossRefPubMedGoogle Scholar
  33. Riebeling, C., Allegood, J. C., Wang, E., Merrill, A. H. Jr., and Futerman, A. H. (2003). J. Biol. Chem. 278, 43452–43459.CrossRefPubMedGoogle Scholar
  34. Rodriguez-Lafrasse, C., Alphonse, G., Broquet, P., Aloy, M., Louisot, P., and Rousson, R. (2001). Biochem. J. 357, 407–416.CrossRefPubMedGoogle Scholar
  35. Rostovtseva, T. K., Antonsson, B., Suzuki, M., Youle, R. J., Colombini, M., and Bezrukov, S. M. (2004). J. Biol. Chem. 279, 13575–13583.CrossRefPubMedGoogle Scholar
  36. Saelens, X., Festjens, N., Walle, L. V., van Gurp, M., van Loo, G., and Vandenabeele, P. (2004). Oncogene 23, 2861–2874.CrossRefPubMedGoogle Scholar
  37. Saito, M., Korsmeyer, S. J., and Schlesinger, P. H. (2000). Nat. Cell Biol. 2, 553–555.CrossRefPubMedGoogle Scholar
  38. Schafer, P., Scholz, S. R., Gimadutdinow, O., Cymerman, I. A., Bujnicki, J. M., Ruiz-Carrillo, A., Pingoud, A., and Meiss, G. (2004). J. Mol. Biol. 338, 217–228.CrossRefPubMedGoogle Scholar
  39. Schultz, S. G., and Solomon, A. K. (1961). J. Gen. Physiol. 44, 1189–1199.CrossRefPubMedGoogle Scholar
  40. Siskind, L. J., and Colombini, M. (2000). J. Biol. Chem. 275, 38640–38644.CrossRefPubMedGoogle Scholar
  41. Siskind, L. J., Davoody, A., Lewin, N., Marshall, S., and Colombini, M. (2003). Biophys. J. 85, 1560–1575.PubMedGoogle Scholar
  42. Siskind, L. J., Kolesnick, R. N., and Colombini, M. (2002). J. Biol. Chem. 277, 26796–26803.CrossRefPubMedGoogle Scholar
  43. Susin, S. A., Zamzami, N., and Kroemer, G. (1998). Biochim. Biophys. Acta 1366, 151–165.PubMedGoogle Scholar
  44. Sweeney, E. A., Inokuchi, J., and Igarashi, Y. (1998). FEBS 425, 61–65.CrossRefGoogle Scholar
  45. Tejuca, M., Dalla Serra, M., Potrich, C., Alvarez, C., and Menestrina, G. (2001). J. Membr. Biol. 183, 125–135.CrossRefPubMedGoogle Scholar
  46. Terrones, O., Antonsson, B., Yamaguchi, H., Wang, H.-G., Liu, J., Lee, R. M., Herrmann, A., and Basañez, G. (2004). J. Biol. Chem. 279, 30081–30091.CrossRefPubMedGoogle Scholar
  47. Thomas, R. L. Jr., Matsko, C. M., Lotze, M. T., and Amoscato, A. A. (1999). J. Biol. Chem. 274, 30580–30588.CrossRefPubMedGoogle Scholar
  48. Vander Heiden, M. G., Li, X. X., Gottleib, E., Hill, R. B., Thompson, C. B., and Colombini, M. (2001). J. Biol. Chem. 276, 19414–19419.CrossRefPubMedGoogle Scholar
  49. Venkataraman, K., Riebeling, C., Bodennec, J., Riezman, H., Allegood, J. C., Sullards, M. C., Merrill, A. H. Jr., and Futerman, A. H. (2002). J. Biol. Chem. 277, 35642–35649.CrossRefPubMedGoogle Scholar
  50. Wiesner, D. A., Kilkus, J. P., Gottscalk, A. R., Quintáns, J., and Dawson, G. (1997). J. Biol. Chem. 272, 9868–9876.CrossRefPubMedGoogle Scholar
  51. Witty, J. P., Bridgham, J. T., and Johnson, A. L. (1996). Endocrinology 137, 5269–5277.CrossRefPubMedGoogle Scholar
  52. Zhang, J., Alter, N., Reed, J. C., Borner, C., Obeid, L. M., and Hannun, Y. A. (1996). Proc. Natl. Acad. Sci. U.S.A. 93, 5325–5328.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Leah J. Siskind
    • 1
  • Sharon Fluss
    • 1
  • Minh Bui
    • 1
  • Marco Colombini
    • 1
  1. 1.Department of BiologyUniversity of Maryland College ParkCollege Park

Personalised recommendations