Journal of Bioenergetics and Biomembranes

, Volume 37, Issue 2, pp 97–107 | Cite as

In Phosphorylating Acanthamoeba castellanii Mitochondria the Sensitivity of Uncoupling Protein Activity to GTP Depends on the Redox State of Quinone

  • Wieslawa Jarmuszkiewicz
  • Aleksandra Swida
  • Malgorzata Czarna
  • Nina Antos
  • Claudine M. Sluse-Goffart
  • Francis E. Sluse


In isolated Acanthamoeba castellanii mitochondria respiring in state 3 with external NADH or succinate, the linoleic acid-induced purine nucleotide-sensitive uncoupling protein activity is able to uncouple oxidative phosphorylation. The linoleic acid-induced uncoupling can be inhibited by a purine nucleotide (GTP) when quinone (Q) is sufficiently oxidized, indicating that in A. castellanii mitochondria respiring in state 3, the sensitivity of uncoupling protein activity to GTP depends on the redox state of the membranous Q. Namely, the inhibition of the linoleic acid-induced uncoupling by GTP is not observed in uninhibited state 3 respiration as well as in state 3 respiration progressively inhibited by complex III inhibitors, i.e., when the rate of quinol (QH2)-oxidizing pathway is decreased. On the contrary, the progressive decrease of state 3 respiration by declining respiratory substrate availability (by succinate uptake limitation or by decreasing external NADH concentration), i.e., when the rate of Q-reducing pathways is decreased, progressively leads to a full inhibitory effect of GTP. Moreover, in A. castellanii mitochondria isolated from cold-treated cells, where a higher uncoupling protein activity is observed, the inhibition of the linoleic acid-induced proton leak by GTP is revealed for the same low values of the Q reduction level.


Mitochondria uncoupling protein purine nucleotide inhibition quinone redox state Acanthamoeba castellanii 



proton electrochemical gradient


uncoupling protein


uncoupling protein of brown adipose tissue mitochondria


free fatty acids


mitochondrial membrane potential


linoleic acid


bovine serum albumin




uncoupling protein of Acanthamoeba castellanii mitochondria




oxidized quinone

Qred or QH2

reduced quinone (quinol)


total endogenous pool of quinone in the inner mitochondrial membrane (Qox + Qred)


reduction level of quinone


respiratory rate in phosphorylating state 3


rate of ATP synthesis


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andreyev, A. Y., Bondareva, T. O., Dedukhova, V. I., Mokhova, E. N., Skulachev, V. P., Tsofina, L. M., Volkov, N. L., and Vygodina, T. V. (1989). Eur. J. Biochem. 182, 585–592.CrossRefPubMedGoogle Scholar
  2. Considine, M. J., Goodman, M., Echtay, K. S., Laloi, M., Whelan, J., Brand, M. D., and Sweetlove, L. J. (2003). J. Biol. Chem. 278, 22298–22302.CrossRefPubMedGoogle Scholar
  3. Echtay, K. S., and Brand, M. D. (2001). Biochem. Soc. Trans. 29, 763–768.PubMedGoogle Scholar
  4. Echtay, K. S., Roussel, D., St.-Pierre, J., Jekabsons, M. B., Cadenas, S., Stuart, J. A., Harper, J. A., Roubuck, S. J., Morrison, A., Pickering, S., Clapham, J. C., and Brand, M. D. (2002). Nature 415, 96–99.PubMedGoogle Scholar
  5. Echtay, K. S., Winkler, E., Frischmuth, K., and Klingenberg, M. (2001). Proc. Natl. Acad. Sci. 98, 1416–1421.PubMedGoogle Scholar
  6. Echtay, K. S., Winkler, E., and Klingenberg, M. (2000). Nature 408, 609–613.PubMedGoogle Scholar
  7. Goglia, F., and Skulachev, V. P. (2003). FASEB J. 17, 1585–1591.PubMedGoogle Scholar
  8. Gray, M. W., Burger, G., and Lang, B. F. (1999). Science 283, 1476–1482.PubMedGoogle Scholar
  9. Hoefnagel, M. H. N., and Wiskich, J. T. (1996). Plant Physiol. 110, 1329–1335.PubMedGoogle Scholar
  10. Jaburek, M., and Garlid, K. D. (2003). J. Biol. Chem. 278, 25825–25831.PubMedGoogle Scholar
  11. Jaburek, M., Varecha, M., Gimeno, R. E., Dembski, M., Ježek, P., Zhang, M., Burn, P., Tartaglia, L. A., and Garlid, K. D. (1999). J. Biol. Chem. 274, 26003–26007.PubMedGoogle Scholar
  12. Jarmuszkiewicz, W., Almeida, A. M., Sluse-Goffart, C. M., Sluse, F. E., and Vercesi, A. E. (1998a). J. Biol. Chem. 273, 34882–34886.Google Scholar
  13. Jarmuszkiewicz, W., Almeida, A. M., Vercesi, A. E., Sluse, F. E., and Sluse-Goffart, C. M. (2000b). J. Biol. Chem. 275, 13315–13320.Google Scholar
  14. Jarmuszkiewicz, W., Antos, N., Swida, A., Czarna, M., and Sluse, F. E. (2004a). FEBS Lett. 569, 178–184.Google Scholar
  15. Jarmuszkiewicz, W., Behrendt, M., Navet, R., and Sluse, F. E. (2003). FEBS Lett. 532, 459–464.Google Scholar
  16. Jarmuszkiewicz, W., Czarna, M., Sluse-Goffart, C. M., and Sluse, F. E. (2004c). Acta Biochem. Pol. 51, 533–538.Google Scholar
  17. Jarmuszkiewicz, W., Fraczyk, O., and Hryniewiecka, L. (2001). Acta Biochem. Pol. 48, 729–737.Google Scholar
  18. Jarmuszkiewicz, W., Milani, G., Fortes, F., Schreiber, A. Z., Sluse, F. E., and Vercesi, A. E. (2000a). FEBS Lett. 467, 145–149.Google Scholar
  19. Jarmuszkiewicz, W., Navet, R., Alberici, L. C., Douette, P., Sluse-Goffart, C. M., Sluse, F. E., and Vercesi, A. E. (2004b). J. Bioenerg. Biomembr. 36(5), 493–502.Google Scholar
  20. Jarmuszkiewicz, W., Sluse-Goffart, C. M., Hryniewiecka, L., Michejda, J., and Sluse, F. E. (1998b). J. Biol. Chem. 273, 10174–10180.Google Scholar
  21. Jarmuszkiewicz, W., Sluse-Goffart, C. M., Hryniewiecka, L., and Sluse, F. E. (1999). J. Biol. Chem. 274, 23198–23202.PubMedGoogle Scholar
  22. Jarmuszkiewicz, W., Wagner, A. M., Wagner, M. J., and Hryniewiecka, L. (1997). FEBS Lett. 411, 110–114.PubMedGoogle Scholar
  23. Ježek, P. (2002). Int. J. Biochem. Cell Biol. 34, 1190–1206.PubMedGoogle Scholar
  24. Kamo, N., Muratsugu, N., Hongoh, R., and Kobatake, Y. (1979). J. Membr. Biol. 49, 105–121.PubMedGoogle Scholar
  25. Klingenberg, M. (1990). Trends Biochem. Sci. 15, 108–112.PubMedGoogle Scholar
  26. Ricquier, D., and Bouillaud, F. (2000). Biochem. J. 345, 161–179.PubMedGoogle Scholar
  27. Samartsev, V. N., Mokhova, E. N., and Skulachev, V. P. (1997). FEBS Lett. 412, 251–257.Google Scholar
  28. Skulachev, V. P. (1998). Biochim. Biophys. Acta 1363, 100–124.PubMedGoogle Scholar
  29. Sluse, F. E., and Jarmuszkiewicz, W. (2002). FEBS Lett. 510, 117–120.PubMedGoogle Scholar
  30. Tablot, D. A., Lambert, A. J., and Brand, M. D. (2004). FEBS Lett. 556, 111–115.PubMedGoogle Scholar
  31. Tudella, V. G., Curti, C., Soriani, F. M., Santos, A., and Uyemura, S. A. (2003). Int. J. Biochem. Cell Biol. 36, 162–172.Google Scholar
  32. Uyemura, S. A., Luo, S., Moreno, S. N. J., and Docampo, R. (2000). J. Biol. Chem. 275, 9709–9715.PubMedGoogle Scholar
  33. Van den Bergen, C. W., Wagner, A. M., Krab, K., and Moore, A. L. (1994). Eur. J. Biochem. 226, 1071–1078.PubMedGoogle Scholar
  34. Wainright, P. O., Hinkle, G., Sogin, M. L., and Stickel, S. K. (1993). Science 260, 340–342.PubMedGoogle Scholar
  35. Wieckowski, M. R., and Wojtczak, L. (1997). Biochem. Biophys. Res. Commun. 232, 414–417.PubMedGoogle Scholar
  36. Žáčková, M., Kramer, R., and Ježek, P. (2000). Int. J. Biochem. Cell Biol. 32, 499–508.PubMedGoogle Scholar
  37. Žáčková, M., Škobisová, E., Urbánková, E., and Ježek, P. (2003). J. Biol. Chem. 278, 20761–20769.PubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Wieslawa Jarmuszkiewicz
    • 1
    • 3
  • Aleksandra Swida
    • 1
  • Malgorzata Czarna
    • 1
  • Nina Antos
    • 1
  • Claudine M. Sluse-Goffart
    • 2
  • Francis E. Sluse
    • 2
  1. 1.Laboratory of BioenergeticsAdam Mickiewicz UniversityPoznanPoland
  2. 2.Laboratory of Bioenergetics, Department of Life Sciences and Centre of Oxygen Research and Development, Institute of Chemistry B6cUniversity of LiegeLiegeBelgium
  3. 3.Laboratory of BioenergeticsAdam Mickiewicz UniversityPoznanPoland

Personalised recommendations