Journal of Bioenergetics and Biomembranes

, Volume 36, Issue 6, pp 525–531 | Cite as

Regulation by Magnesium of Potato Tuber Mitochondrial Respiratory Activities

  • Joaquim A. F. Vicente
  • Vítor M. C. Madeira
  • Anibal E. Vercesi


Dehydrogenase activities of potato tuber mitochondria and corresponding phosphorylation rates were measured for the dependence on external and mitochondrial matrix Mg2+. Magnesium stimulated state 3 and state 4 respiration, with significantly different concentrations of matrix Mg2+ required for optimal activities of the several substrates. Maximal stimulation of respiration with all substrates was obtained at 2-mM external Mg2+. However, respiration of malate, citrate, and α-ketoglutarate requires at least 4-mM Mg2+ inside mitochondria for maximization of dehydrogenase activities. The phosphorylation system, requires a low level of internal Mg2+ (0.25 mM) to reach high activity, as judged by succinate-dependent respiration. However, mitochondria respiring on citrate or α-ketoglutarate only sustain high levels of phosphorylation with at least 4-mM matrix Mg2+. Respiration of succinate is active without external and matrix Mg2+, although stimulated by the cation. Respiration of α-ketoglutarate was strictly dependent on external Mg2+ required for substrate transport into mitochondria, and internal Mg2+ is required for dehydrogenase activity. Respiration of citrate and malate also depend on internal Mg2+ but, unlike α-ketoglutarate, some activity still remains without external Mg2+. All the substrates revealed insensitive to external and internal mitochondrial Ca2+, except the exogenous NADH dehydrogenase, which requires either external Ca2+ or Mg2+ for detectable activity. Calcium is more efficient than Mg2+, both having cumulative stimulation. Unlike Ca2+, Mn2+ could substitute for Mg2+, before and after addition of A23, showing its ability to regulate phosphorylation and succinate dehydrogenase activities, with almost the same efficiency as Mg2+.


Magnesium regulation plant mitochondria mitochondrial respiration A23187 mitochondrial Mg2+ depletion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beavis, A. D., and Garlid, K. D. (1987). J. Biol. Chem. 262, 15085–15093.Google Scholar
  2. Beavis, A. D., and Vercesi, A. E. (1992). J. Biol. Chem. 267, 3079– 3087.Google Scholar
  3. Bedino, S., and Testore, G. (1992). Int. J. Biochem. 24, 1697–1704.Google Scholar
  4. Bernardi, P. (1999). Physiol. Rev. 79, 1127–1155.Google Scholar
  5. Bowman, E. J., and Ikuma, H. (1976). Plant Physiol. 58, 433–437.Google Scholar
  6. Bradford, M. M. (1976). Anal. Biochem. 72, 248–264.CrossRefPubMedGoogle Scholar
  7. Bulygin, V. V., Syroeshkin, A. V., and Vinogradov, A. D. (1993). FEBS Lett. 328, 193–196.Google Scholar
  8. Cadenas, S., and Brand, M. D. (2000). Biochem. J. 348, 209–213.Google Scholar
  9. Chen, C.-H., and Lehninger, A. L. (1973). Arch. Biochem. Biophys. 157, 183–196.Google Scholar
  10. Corkey, B. E., Duszynski, J., Rich, T. L., Matschinsky, B., and Williamson, J. R. (1986). J. Biol. Chem. 261, 2567–2574.Google Scholar
  11. Coultate, T. P., and Dennis, D. T. (1969). Eur. J. Biochem. 7, 153–158.Google Scholar
  12. Flatman, P. W. (1984). J. Membr. Biol 80, 1–14.Google Scholar
  13. Gómez-Puyou, A., Ayala, G., Muller, U., and Gómez-Puyou, M. T. (1983). J. Biol. Chem. 258, 13673–13679.Google Scholar
  14. Jung, D. W., Panzeter, E., Baysal, K., and Brierley, G. P. (1997). Biochim. Biophys. Acta 1320, 310–320.Google Scholar
  15. Kamo, N., Muratsugu, M., Hongoh, R., and Kobatake, Y. (1979). J. Membr. Biol. 49, 105–121.Google Scholar
  16. McCormack, J. G., and Denton, R. M. (1979). Biochem. J. 180, 533– 544.Google Scholar
  17. McCormack, J. G., Halestrap, A., and Denton, R. M. (1990). Physiol. Rev. 70, 391–425.Google Scholar
  18. Moravec, C. S., and Bond, M. (1991). Am. J. Physiol. 260, H989– H997.Google Scholar
  19. Moravec, C. S., and Bond, M. (1992). J. Biol. Chem. 267, 5310–5316.Google Scholar
  20. Neuburger, M., Journet, E.-P., Bligny, R., Carde, J.-P., and Douce, R. (1982). . Arch. Biochem. Biophys. 217, 312–323.Google Scholar
  21. Panov, A., and Scarpa, A. (1996a). Biochemistry 35, 427–432.Google Scholar
  22. Panov, A., and Scarpa, A. (1996b). Biochemistry 35, 12849–12856.Google Scholar
  23. Pfeiffer, D. R., Reed, P. W., and Lardy, H. A. (1974). Biochemistry 13, 4007–4014.Google Scholar
  24. Reed, K. C., and Bygrave, F. L. (1974). Biochem. J. 140, 143–150.Google Scholar
  25. Reed, P. W., and Lardy, H. A. (1972). J. Biol. Chem. 247, 6970–6977.Google Scholar
  26. Romani, A., Dowell, E., and Scarpa, A. (1991). J. Biol. Chem. 266, 24376–24384.Google Scholar
  27. Romani, A., Marfella, C., and Scarpa, A. (1993). J. Biol. Chem. 268, 15489–15495.Google Scholar
  28. Soole, K. L., Dry, I. B., and Wiskich, J. T. (1990). Physiol. Plant 87, 205–210.Google Scholar
  29. Thomas, A. P., Diggle, T. A., and Denton, R. M. (1986). Biochem. J. 238, 83–91.Google Scholar
  30. Tobin, A., Djerddjour, B., Journet, E., Neuburger, M., and Douce, R. (1980). Plant Physiol. 66, 225–229.Google Scholar
  31. Turano, F. J. (1998). Physiol. Plant 104, 337–344.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2004

Authors and Affiliations

  • Joaquim A. F. Vicente
    • 1
    • 4
  • Vítor M. C. Madeira
    • 2
  • Anibal E. Vercesi
    • 3
  1. 1.Departamento de BotânicaUniversidade de CoimbraCoimbraPortugal
  2. 2.Departamento de Bioquímica da Faculdade de Ciências e TecnologiaUniversidade de CoimbraCoimbraPortugal
  3. 3.Departamento de Patologia Clínica, Faculdade de Ciências MédicasUniversidade Estadual de CampinasCampinasBrasil
  4. 4.Departamento de Zoologia, FCTUniversidade de CoimbraCoimbraPortugal

Personalised recommendations