Skip to main content
Log in

Automated projection spectroscopy in solid-state NMR

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

Given that solid-state NMR is being used for protein samples of increasing molecular weight and complexity, higher-dimensionality methods are likely to be more and more indispensable for unambiguous chemical shift assignments in the near future. In addition, solid-state NMR spectral properties are increasingly comparable with solution NMR, allowing adaptation of more sophisticated solution NMR strategies for the solid state in addition to the conventional methodology. Assessing first principles, here we demonstrate the application of automated projection spectroscopy for a micro-crystalline protein in the solid state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Andreas LB et al (2015) Protein residue linking in a single spectrum for magic-angle spinning NMR assignment. J Biomol NMR 62:253–261

    Article  Google Scholar 

  • Bartels C, Billeter M, Güntert P, Wüthrich K (1996) Automated sequence-specific NMR assignment of homologous proteins using the program GARANT. J Biomol NMR 7:207–213

    Article  Google Scholar 

  • Chevelkov V, Giller K, Becker S, Lange A, Efficient (2013) CO-CA transfer in highly deuterated proteins by band-selective homonuclear cross-polarization. J Magn Reson 230:205–211

    Article  ADS  Google Scholar 

  • Christian B, Peter G, Martin B, Kurt W (1997) GARANT-a general algorithm for resonance assignment of multidimensional nuclear magnetic resonance spectra. J Comput Chem 18:139–149

    Article  Google Scholar 

  • Fiorito F, Hiller S, Wider G, Wüthrich K (2006) Automated resonance assignment of proteins: 6 DAPSY-NMR. J Biomol NMR 35:27–37

    Article  Google Scholar 

  • Fraga H et al (2017) Solid-state NMR H–N–(C)–H and H–N–C–C 3D/4D correlation experiments for resonance assignment of large proteins. ChemPhysChem 18:2697–2703

    Article  Google Scholar 

  • Gossert AD, Hiller S, Fernández C (2011) Automated NMR resonance assignment of large proteins for protein-ligand interaction studies. J Am Chem Soc 133:210–213

    Article  Google Scholar 

  • Hartmann SR, Hahn EL (1962) Nuclear double resonance in the rotating frame. Phys Rev 128:2042–2053

    Article  ADS  Google Scholar 

  • Hiller S, Wider G (2012) Automated projection spectroscopy and its applications. Top Curr Chem 316:21–48

    Article  Google Scholar 

  • Hiller S, Fiorito F, Wüthrich K, Wider G (2005) Automated projection spectroscopy (APSY). Proc Natl Acad Sci USA 102:10876–10881

    Article  ADS  Google Scholar 

  • Hiller S, Joss R, Wider G (2008a) Automated NMR assignment of protein side chain resonances using automated projection spectroscopy (APSY). J Am Chem Soc 130:12073–12079

    Article  Google Scholar 

  • Hiller S, Wider G, Wüthrich K (2008b) APSY-NMR with proteins: practical aspects and backbone assignment. J Biomol NMR 42:179–195

    Article  Google Scholar 

  • Hoch JC, Maciejewski MW, Mobli M, Schuyler AD, Stern AS (2014) Nonuniform sampling and maximum entropy reconstruction in multidimensional NMR. Acc Chem Res 47:708–717

    Article  Google Scholar 

  • Huber M, Böckmann A, Hiller S, Meier BH (2012) 4D solid-state NMR for protein structure determination. Phys Chem Chem Phys 14:5239–5246

    Article  Google Scholar 

  • Hyberts SG, Takeuchi K, Wagner G (2010) Poisson-gap sampling and forward maximum entropy reconstruction for enhancing the resolution and sensitivity of protein NMR data. J Am Chem Soc 132:2145–2147

    Article  Google Scholar 

  • Hyberts SG, Milbradt AG, Wagner AB, Arthanari H, Wagner G (2012) Application of iterative soft thresholding for fast reconstruction of NMR data non-uniformly sampled with multidimensional poisson gap scheduling. J Biomol NMR 52:315–327

    Article  Google Scholar 

  • Jung Y-S, Zweckstetter M (2004) Mars—robust automatic backbone assignment of proteins. J Biomol NMR 30:11–23

    Article  Google Scholar 

  • Kazimierczuk K, Stanek J, Zawadzka-Kazimierczuk A, Kozminski W (2010) Random sampling in multidimensional NMR spectroscopy. Prog Nucl Magn Reson Spectrosc 57:420–434

    Article  Google Scholar 

  • Krähenbühl B, Boudet J, Wider G (2013) 4D experiments measured with APSY for automated backbone resonance assignments of large proteins. J Biomol NMR 56:149–154

    Article  Google Scholar 

  • Kupce E, Freeman R (2004) Projection-reconstruction technique for speeding up multidimensional NMR spectroscopy. J Am Chem Soc 126:6429–6440

    Article  Google Scholar 

  • Kupce E, Nishida T, Freeman R (2003) Hadmard NMR spectroscopy. Prog Nucl Magn Reson Spectrosc 42:95–122

    Article  Google Scholar 

  • Linser R, Chevelkov V, Diehl A, Reif B (2007) Sensitivity enhancement using paramagnetic relaxation in MAS solid-state NMR of perdeuterated proteins. J Magn Reson 189:209–216

    Article  ADS  Google Scholar 

  • Linser R et al (2014) Solid-state NMR structure determination from diagonal-compensated, sparsely nonuniform-sampled 4D proton–proton restraints. J Am Chem Soc 136:11002–11010

    Article  Google Scholar 

  • Nagayama K, Bachmann P, Wüthrich K, Ernst RR (1978) The use of cross-sections and projections in two-dimensional NMR spectroscopy. J Magn Reson 31:133–148

    ADS  Google Scholar 

  • Nowakowski M, Saxena S, Stanek J, Zerko S, Kozminski W (2015) Applications of high dimensionality experiments to biomolecular NMR. Prog Nucl Magn Reson Spectrosc 90–91:49–73

    Article  Google Scholar 

  • Palmer MR et al (2015) Sensitivity of nonuniform sampling NMR. J Phys Chem B 119:6502–6515

    Article  Google Scholar 

  • Quinn CM, Polenova T (2017) Structural biology of supramolecular assemblies by magic-angle spinning NMR spectroscopy. Q Rev Biophys 50:e1

    Article  Google Scholar 

  • Schmidt E, Güntert P (2012) A new algorithm for reliable and general NMR resonance assignment. J Am Chem Soc 134:12817–12829

    Article  Google Scholar 

  • Shi C et al (2015) Atomic-resolution structure of cytoskeletal bactofilin by solid-state NMR. Sci Adv 1:e1501087

    Article  ADS  Google Scholar 

  • Vasa SK, Singh H, Rovó P, Linser R (2018a) Dynamics and interactions of a 29-kDa human enzyme studied by solid-state NMR. J Phys Chem Lett 9:1307–1311

    Article  Google Scholar 

  • Vasa SK, Rovó P, Linser R (2018b) Protons as versatile reporters in solid-state NMR spectroscopy. Acc Chem Res 51:1386–1395

    Article  Google Scholar 

  • Volk J, Herrmann T, Wüthrich K (2008) Automated sequence-specific protein NMR assignment using the memetic algorithm MATCH. J Biomol NMR 41:127

    Article  Google Scholar 

  • Xiang S, Chevelkov V, Becker S, Lange A (2014) Towards automatic protein backbone assignment using proton-detected 4D solid-state NMR data. J Biomol NMR 60:85–90

    Article  Google Scholar 

  • Xiang S et al (2015) Sequential backbone assignment based on dipolar amide-to-amide correlation experiments. J Biomol NMR 62:303–311

    Article  Google Scholar 

  • Xiang S, Biernat J, Mandelkow E, Becker S, Linser R (2016) Backbone assignment for minimal protein amounts of low structural homogeneity in the absence of deuteration. Chem Commun 52:4002–4005

    Article  Google Scholar 

  • Zhou DH et al (2007) Solid-state protein structure determination with proton-detected triple resonance 3D magic-angle spinning NMR spectroscopy. Angew Chem Int Ed 46:8380–8383

    Article  Google Scholar 

  • Zinke M et al (2017) Bacteriophage tail tube assembly studied by proton-detected 4D solid-state NMR. Angew Chem Int Ed 129:9625–9629

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Karin Giller and Dr. Stefan Becker for sample preparation and Prof. Dr. Sebastian Hiller for APSY-related scripts. Financial support is acknowledged from the Deutsche Forschungsgemeinschaft (SFB 749, TP A13, SFB 1309, TP A03, as well as the Emmy Noether program), the Excellence Clusters CiPS-M and RESOLV, and the Center for NanoScience (CeNS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rasmus Linser.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klein, A., Vasa, S.K. & Linser, R. Automated projection spectroscopy in solid-state NMR. J Biomol NMR 72, 163–170 (2018). https://doi.org/10.1007/s10858-018-0215-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-018-0215-0

Keywords

Navigation