Skip to main content
Log in

Methyl-selective isotope labeling using α-ketoisovalerate for the yeast Pichia pastoris recombinant protein expression system

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

Methyl-detected NMR spectroscopy is a useful tool for investigating the structures and interactions of large macromolecules such as membrane proteins. The procedures for preparation of methyl-specific isotopically-labeled proteins were established for the Escherichia coli (E. coli) expression system, but typically it is not feasible to express eukaryotic proteins using E. coli. The Pichia pastoris (P. pastoris) expression system is the most common yeast expression system, and is known to be superior to the E. coli system for the expression of mammalian proteins, including secretory and membrane proteins. However, this system has not yet been optimized for methyl-specific isotope labeling, especially for Val/Leu-methyl specific isotope incorporation. To overcome this difficulty, we explored various culture conditions for the yeast cells to efficiently uptake Val/Leu precursors. Among the searched conditions, we found that the cultivation pH has a critical effect on Val/Leu precursor uptake. At an acidic cultivation pH, the uptake of the Val/Leu precursor was increased, and methyl groups of Val and Leu in the synthesized recombinant protein yielded intense 1H–13C correlation signals. Based on these results, we present optimized protocols for the Val/Leu-methyl-selective 13C incorporation by the P. pastoris expression system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • André N, Cherouati N, Prual C, Steffan T, Zeder-Lutz G, Magnin T, Pattus F, Michel H, Wagner R, Reinhart C (2006) Enhancing functional production of G protein-coupled receptors in Pichia pastoris to levels required for structural studies via a single expression screen. Protein Sci 15:1115–1126

    Article  Google Scholar 

  • Ayala I, Sounier R, Usé N, Gans P, Boisbouvier J (2009) An efficient protocol for the complete incorporation of methyl-protonated alanine in perdeuterated protein. J Biomol NMR 43:111–119

    Article  Google Scholar 

  • Bai XC, McMullan G, Scheres SH (2015) How cryo-EM is revolutionizing structural biology. Trends Biochem Sci 40:49–57

    Article  Google Scholar 

  • Bardwell JC (1994) Building bridges: disulphide bond formation in the cell. Mol Microbiol 14:199–205

    Article  Google Scholar 

  • Bordo D, Argos P (1991) Suggestions for “safe” residue substitutions in site-directed mutagenesis. J Mol Biol 217:721–729

    Article  Google Scholar 

  • Byme B (2015) Pichia pastoris as an expression host for membrane protein structural biology. Curr Opin Struct Biol 32:9–17

    Article  Google Scholar 

  • Cereghino JL, Cregg JM (2000) Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiol Rev 24:45–66

    Article  Google Scholar 

  • Chen CY, Cheng CH, Chen YC, Lee JC, Chou SH, Huang W, Chuang WJ (2006) Preparation of amino-acid-type selective isotope labeling of protein expressed in Pichia pastoris. Proteins 62:279–287

    Article  Google Scholar 

  • Cheng Y (2015) Single-particle cryo-EM at crystallographic resolution. Cell 161:450–457

    Article  Google Scholar 

  • Chiruvolu V, Eskridge K, Cregg J, Meagher M (1998) Effects of glycerol concentration and pH on growth of recombinant Pichia pastoris yeast. Appl Biochem Biotechnol 75:163–173

    Article  Google Scholar 

  • Clark L, Zahm JA, Ali R, Kukula M, Bian L, Patrie SM, Gardner KH, Rosen MK, Rosenbaum DM (2015) Methyl labeling and TROSY NMR spectroscopy of proteins expressed in the eukaryote Pichia pastoris. J Biomol NMR 62:239–245

    Article  Google Scholar 

  • Clark LD, Dikiy I, Chapman K, Rödström KE, Aramini J, LeVine MV, Khelashvili G, Rasmussen SG, Gardner KH, Rosenbaum DM. Ligand modulation of sidechain dynamics in a wild-type human GPCR. Elife 6:e28505 (2017)

    Article  Google Scholar 

  • Denton H, Smith M, Husi H, Uhrin D, Barlow PN, Batt CA, Sawyer L (1998) Isotopically labeled bovine β-lactoglobulin for NMR studies expressed in Pichia pastoris. Protein Expr Purif 14:97–103

    Article  Google Scholar 

  • Emami S, Fan Y, Munro R, Ladizhansky V, Brown LS (2013) Yeast-expressed human membrane protein aquaporin-1 yields excellent resolution of solid-state MAS NMR spectra. J Biomol NMR 55:147–155

    Article  Google Scholar 

  • Fan Y, Shi L, Ladizhansky V, Brown LS (2011) Uniform isotope labeling of a eukaryotic seven-transmembrane helical protein in yeast enables high-resolution solid-state NMR studies in the lipid environment. J Biomol NMR 49:151–161

    Article  Google Scholar 

  • Fischer M, Kloiber K, Häusler J, Ledolter K, Konrat R, Schmid W (2007) Synthesis of a 13C-methyl-group-labeled methionine precursor as a useful tool for simplifying protein structural analysis by NMR spectroscopy. Chembiochem 8:610–612

    Article  Google Scholar 

  • Förster J, Halbfeld C, Zimmermann M, Blank LM (2014) A blueprint of the amino acid biosynthesis network of hemiascomycetes. FEMS Yeast Res 14:1090–1100

    Google Scholar 

  • Gans P, Hamelin O, Sounier R, Ayala I, Durá MA, Amero CD, Noirclerc-Savoye M, Franzetti B, Plevin MJ, Boisbouvier J (2010) Stereospecific isotopic labeling of methyl groups for NMR spectroscopic studies of high-molecular-weight proteins. Angew Chem Int Ed 49:1958–1962

    Article  Google Scholar 

  • Gelis I, Bonvin AM, Keramisanou D, Koukaki M, Gouridis G, Karamanou S, Economou A, Kalodimos CG (2007) Structural basis for signal-sequence recognition by the translocase motor SecA as determined by NMR. Cell 131:756–769

    Article  Google Scholar 

  • Goto NK, Gardner KH, Mueller GA, Willis RC, Kay LE (1999) A robust and cost-effective method for the production of Val, Leu, Ile(δ1)methyl-protonated 15N-, 13C-, 2H-labeled proteins. J Biomol NMR 13:369–374

    Article  Google Scholar 

  • Hammarberg T, Hamberg M, Wetterholm A, Hansson H, Samuelsson B, Haeggström JZ (2009) Mutation of a critical arginine in microsomal prostaglandin E synthase-1 shifts the isomerase activity to a reductase activity that converts Prostaglandin H2 into Prostaglandin F. J Biol Chem 284:301–305

    Article  Google Scholar 

  • Imai T, Ohno T (1995) The relationship between viability and intracellular pH in the yeast Saccharomyces cerevisiae. Appl Environ Microbiol 61:3604–3608

    Google Scholar 

  • Isaacson RL, Simpson PJ, Liu M, Cota E, Zhang X, Freemont P, Mattews S (2007) A new labeling method for methyl transverse relaxation-optimized spectroscopy NMR spectra of alanine residues. J Am Chem Soc 129:15428–15429

    Article  Google Scholar 

  • Isidro IA, Portela RM, Clemente JJ, Cunha AE, Oliveira R (2016) Hybrid metabolic flux analysis and recombinant protein prediction in Pichia pastoris X-33 cultures expressing a single-chain antibody fragment. Bioprocess Biosyst Eng 39:1351–1363

    Article  Google Scholar 

  • Jamalzadeh E, Verheijen PJ, Heijnen JJ, van Gulik WM (2012) pH-dependent uptake of fumaric acid in Saccharomyces cerevisiae under anaerobic conditions. Appl Environ Microbiol 78:705–716

    Article  Google Scholar 

  • Katz JJ, Crespi HL (1966) Deuterated organisms: cultivation and uses. Science 151:1187–1194

    Article  ADS  Google Scholar 

  • Kay LE (2011) Solution NMR spectroscopy of supra-molecular systems, why bother? A methyl-TROSY view. J Magn Reson 210:159–170

    Article  ADS  Google Scholar 

  • Kerfah R, Plevin MJ, Sounier R, Gans P, Boisbouvier J (2015) Methyl-specific isotopic labeling: a molecular tool box for solution NMR studies of large proteins. Curr Opin Struct Biol 32:113–122

    Article  Google Scholar 

  • Kim TR, Goto Y, Hirota N, Kuwata K, Denton H, Wu SY, Sawyer L, Batt CA (1997) High-level expression of bovine β-lactoglobulin in Pichia pastoris and characterization of its physical properties. Protein Eng 10:1339–1345

    Article  Google Scholar 

  • Kobayashi K, Kuwae S, Ohya T, Ohda T, Ohyama M, Ohi H, Tomomitsu K, Ohmura T (2000) High-level expression of recombinant human serum albumin from the methylotrophic yeast Pichia pastoris with minimal protease production and activation. J Biosci Bioeng 89:55–61

    Article  Google Scholar 

  • Kofuku Y, Ueda T, Okude J, Shiraishi Y, Kondo K, Mizumura T, Suzuki S, Shimada I (2014) Functional dynamics of deuterated β2-adrenergic receptor in lipid bilayers revealed by NMR spectroscopy. Angew Chem Int Ed 53:13376–13379

    Article  Google Scholar 

  • Laroche Y, Strome V, De Meutter J, Messens J, Lauwereys M (1994) High-level secretion and very efficient isotopic labeling of tick anticoagulant peptide (TAP) expressed in the methylotrophic yeast, Pichia pastoris. Biotechnology 12:1119–1124

    Article  Google Scholar 

  • Leuking A, Holz C, Gotthold C, Lehrach H, Cahill (2000) D. A system for dual protein expression in Pichia pastoris and Escherichia coli. Protein Expr Purif 20:372–378

    Article  Google Scholar 

  • Li P, Anumanthan A, Gao XG, Ilangovan K, Suzara VV, Düzgüneş N, Renugopalakrishnan V (2007) Expression of recombinant proteins in Pichia pastoris. Appl Biochem Biotechnol 142:105–124

    Article  Google Scholar 

  • Liu Y, Engelman DM, Gerstein M (2002) Genomic analysis of membrane protein families: abundance and conserved motifs. Genome Biol 3:research0054

    Google Scholar 

  • Liu J, Liu C, Fan Y, Munro RA, Ladizhansky V, Brown LS, Wang S (2016) Sparse 13C labelling for solid-state NMR studies of P. pastoris expressed eukaryotic seven-transmembrane proteins. J Biomol NMR 65:7–13

    Article  Google Scholar 

  • Loch JI, Bonarek P, Tworzydło M, Polit A, Hawro B, Łach A, Ludwin E, Lewiński K (2016) Engineered β-lactoglobulin produced in E. coli: purification, biophysical and structural characterisation. Mol Biotechnol 58:605–618

    Article  Google Scholar 

  • Lopalco A, Douglas J, Denora N, Stella VJ (2016) Determination of pKa and hydration constants for a series of α-keto-carboxylic acids using nuclear magnetic resonance spectrometry. J Pharm Sci 105:664–672

    Article  Google Scholar 

  • Lundstrom K, Wagner R, Reinhart C, Desmyter A, Cherouati N, Magnin T, Zeder-Lutz G, Courtot M, Prual C, André N, Hassaine G, Michel H, Cambillau C, Pattus F (2006) Structural genomics on membrane proteins: comparison of more than 100 GPCRs in 3 expression systems. J Struct Funct Genomics 7:77–91

    Article  Google Scholar 

  • Massou S, Puech V, Talmont F, Demange P, Lindley ND, Tropis M (1999) & Milon. A. Heterologous expression of a deuterated membrane-integrated receptor and partial deuteration in methylotrophic yeasts. J Biomol NMR 14:231–239

    Article  Google Scholar 

  • Mattanovich D, Branduardi P, Dato L, Gasser B, Sauer M, Porro D (2012) Recombinant protein production in yeasts. Methods Mol Biol 824:329–358

    Article  Google Scholar 

  • Miyazawa-Onami M, Takeuchi K, Takano T, Sugiki T, Shimada I, Takahashi H (2013) Perdeuteration and methyl-selective 1H, 13C-labeling by using a Kluyveromyces lactis expression system. J Biomol NMR 57:297–304

    Article  Google Scholar 

  • Monsalve RI, Lu G, King TP (1999) Expressions of recombinant venom allergen, antigen 5 of yellowjacket (Vespula vulgaris) and paper wasp (Polistes annularis), in bacteria or yeast. Protein Expr Purif 16:410–416

    Article  Google Scholar 

  • Morgan WD, Kragt A, Feeney J (2000) Expression of deuterium-isotope-labelled protein in the yeast Pichia pastoris for NMR studies. J Biomol NMR 17:337–347

    Article  Google Scholar 

  • Ollerenshaw JE, Tugarinov V, Kay LE (2003) Methyl TROSY: explanation and experimental verification. Magn Reson Chem 41:843–852

    Article  Google Scholar 

  • Ponniah K, Loo TS, Edwards PJB, Pascal SM, Jameson GB, Norris GE (2010) The production of soluble and correctly folded recombinant bovine beta-lactoglobulin variants A and B in Escherichia coli for NMR studies. Protein Expr Purif 70:283–289

    Article  Google Scholar 

  • Reinhart C, Krettler C (2006) Structural genomics on membrane proteins, chapter 8. CRC Press, Boca Raton

    Google Scholar 

  • Rosenfeld SA (1999) Use of Pichia pastoris for expression of recombinant proteins. Methods Enzymol 306:154–169

    Article  Google Scholar 

  • Ruschak AM, Velyvis A, Kay LE (2010) A simple strategy for 13C, 1H labeling at the Ile-γ2 methyl position in highly deuterated proteins. J Biomol NMR 48:129–135

    Article  Google Scholar 

  • Sakurai K, Goto Y (2002) Manipulating monomer-dimer equilibrium of bovine β-lactoglobulin by amino acid substitution. J Biol Chem 277:25735–25740

    Article  Google Scholar 

  • Sakurai K, Goto Y (2007) Principal component analysis of the pH-dependent conformational transisions of bovine β-Lactoglobulin monitored by heteronuclear NMR. Proc Natl Acad Sci USA 104:15346–15351

    Article  ADS  Google Scholar 

  • Sawyer L, Kontopidis G (2000) The core lipocalin, bovine beta-lactoglobulin. Biochim Biophys Acta 1482:136–148

    Article  Google Scholar 

  • Shi Y (2014) A glimpse of structural biology through X-ray crystallography. Cell 159:995–1014

    Article  Google Scholar 

  • Singh S, Gras A, Fiez-Vandal C, Ruprecht J, Rana R, Martinez M, Strange PG, Wagner R, Byme B (2008) Large-scale functional expression of WT and truncated human adenosine A2A receptor in Pichia pastoris bioreactor cultures. Microb Cell Fact 7:28

    Article  Google Scholar 

  • Solà A, Maaheimo H, Ylönen K, Ferrer P, Szyperski T (2004) Amino acid biosynthesis and metabolic flux profiling of Pichia pastoris. Eur J Biochem 271:2462–2470

    Article  Google Scholar 

  • Solà A, Jouhten P, Maaheimo H, Sánchez-Ferrando F, Szyperski T, Ferrer P (2007) Metabolic flux profiling of Pichia pastoris grown on glycerol/methanol mixtures in chemostat cultures at low and high dilution rates. Microbiology 153:190–281

    Article  Google Scholar 

  • Souffriau B, den Abt T, Thevelein JM (2012) Evidence for rapid uptake of D-galacturonic acid in the yeast Saccharomyces cerevisiae by a channel-type transport system. FEBS Lett 586:2494–2499

    Article  Google Scholar 

  • Sugiki T, Ichikawa O, Miyazawa-Onami M, Shimada I, Takahashi H (2012) Isotopic labeling of heterologous proteins in the yeast Pichia pastoris and Kluyveromyces lactis. Methods Mol Biol 831:19–36

    Article  Google Scholar 

  • Takahashi H, Miyazawa M, Ina Y, Fukunishi Y, Mizukoshi Y, Nakamura H, Shimada I (2006) Utilization of methyl proton resonances in cross-saturation measurement for determining the interfaces of large protein-protein complexes. J Biomol NMR 34:167–177

    Article  Google Scholar 

  • Tate CG (2001) Overexpression of mammalian integral membrane proteins for structural studies. FEBS Lett 504:94–98

    Article  Google Scholar 

  • Tugarinov V, Hwang PM, Ollerenshaw J, Key LE (2003) Cross-correlated relaxation enhanced 1H–13C NMR spectroscopy of methyl groups in very high molecular weight proteins and protein complexes. J Am Chem Soc 125:10420–10428

    Article  Google Scholar 

  • Uhrínová S, Uhrín D, Denton H, Smith M, Sawyer L, Barlow PN (1998) Complete assignment of 1H, 13C and 15N chemical shifts for bovine β-lactoglobulin: secondary structure and topology of the native state is retained in a partially unfolded form. J Biomol NMR 12:89–107

    Article  Google Scholar 

  • Velyvis A, Ruschak AM, Kay LE (2012) An economical method for production of 2H,13CH3-threonine for solution NMR studies of large protein complexes: application to the 670 kDa proteasome. PLoS ONE 7:e43725

    Article  ADS  Google Scholar 

  • Wetterholm A, Martinez Molina D, Nordlund P, Eshaghi S, Haeggström JZ (2008) High-level expression, purification, and crystallization of recombinant rat leukotriene C4 synthase from the yeast Pichia pastoris. Protein Expr Purif 60:1–6

    Article  Google Scholar 

  • Wiesner S, Sprangers R (2015) Methyl groups as NMR probes for biomolecular interactions. Curr Opin Struct Biol 35:60–67

    Article  Google Scholar 

  • Yu ZW, Quinn PJ (1994) Dimethyl sulphoxide: a review of its applications in cell biology. Biosci Rep 14:259–281

    Article  Google Scholar 

  • Zhang M, Yu XW, Xu Y, Jouhten P, Swapna GVT, Glaser RW, Hunt JF, Montelione GT, Maaheimo H, Szyperski T (2017) 13C metabolic flux profiling of Pichia pastoris grown in aerobic batch cultures on glucose revealed high relative anabolic use of TCA cycle and limited incorporation of provided precursors of branched-chain amino acids. FEBS J 284:3100–3113

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Japan Society for the Promotion of Science, KAKENHI [Grant Nos. JP15H04340 (HT), 24790046 (MS), and 26460038 (MS)], and by research grants from Yokohama City University (MS and HT). The authors are grateful to Prof. Tadashi Ueda (Kyushu University) for his precious advice for the protein expression using P. pastoris.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideo Takahashi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest with the contents of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 215 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suzuki, R., Sakakura, M., Mori, M. et al. Methyl-selective isotope labeling using α-ketoisovalerate for the yeast Pichia pastoris recombinant protein expression system. J Biomol NMR 71, 213–223 (2018). https://doi.org/10.1007/s10858-018-0192-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-018-0192-3

Keywords

Navigation