Skip to main content
Log in

POTENCI: prediction of temperature, neighbor and pH-corrected chemical shifts for intrinsically disordered proteins

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

Chemical shifts contain important site-specific information on the structure and dynamics of proteins. Deviations from statistical average values, known as random coil chemical shifts (RCCSs), are extensively used to infer these relationships. Unfortunately, the use of imprecise reference RCCSs leads to biased inference and obstructs the detection of subtle structural features. Here we present a new method, POTENCI, for the prediction of RCCSs that outperforms the currently most authoritative methods. POTENCI is parametrized using a large curated database of chemical shifts for protein segments with validated disorder; It takes pH and temperature explicitly into account, and includes sequence-dependent nearest and next-nearest neighbor corrections as well as second-order corrections. RCCS predictions with POTENCI show root-mean-square values that are lower by 25–78%, with the largest improvements observed for 1Hα and 13C′. It is demonstrated how POTENCI can be applied to analyze subtle deviations from RCCSs to detect small populations of residual structure in intrinsically disorder proteins that were not discernible before. POTENCI source code is available for download, or can be deployed from the URL http://www.protein-nmr.org.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Akaike H (1974) New look at statistical-model identification. IEEE Trans Autom Control AC19:716–723

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Akaike H (1985) Prediction and entropy. A celebration of statistics. Atkinson ACF, SE New York, Springer, pp 1–24

  • Baker D, Sali A (2001) Protein structure prediction and structural genomics. Science 294:93–96

    Article  ADS  Google Scholar 

  • Bartels C, Guntert P, Billeter M, Wuthrich K (1997) GARANT—a general algorithm for resonance assignment of multidimensional nuclear magnetic resonance spectra. J Comput Chem 18:139–149

    Article  Google Scholar 

  • Berjanskii MV, Wishart DS (2005) A simple method to predict protein flexibility using secondary chemical shifts. J Am Chem Soc 127:14970–14971

    Article  Google Scholar 

  • Bermel W et al (2013) High-dimensionality C-13 direct-detected NMR experiments for the automatic assignment of intrinsically disordered proteins. J Biomol NMR 57:353–361

    Article  Google Scholar 

  • Braun D, Wider G, Wuethrich K (1994) Sequence-corrected 15N “random coil” chemical shifts. J Am Chem Soc 116:8466–8469

    Article  Google Scholar 

  • Brutscher B et al (2015) NMR methods for the study of instrinsically disordered proteins structure, dynamics, and interactions: general overview and practical guidelines. Adv Exp Med Biol 870:49–122

    Article  Google Scholar 

  • Bundi A, Wüthrich K (1979) 1H-nmr parameters of the common amino acid residues measured in aqueous solutions of the linear tetrapeptides H-Gly-Gly-X-L-Ala-OH. Biopolymers 18:285–297

    Article  Google Scholar 

  • Burley SK (2000) An overview of structural genomics. Nat Struct Biol 7:932–934

    Article  Google Scholar 

  • Camilloni C, De Simone A, Vranken WF, Vendruscolo M (2012) Determination of secondary structure populations in disordered states of proteins using nuclear magnetic resonance chemical shifts. Biochemistry 51:2224–2231

    Article  Google Scholar 

  • Cavalli A, Salvatella X, Dobson CM, Vendruscolo M (2007) Protein structure determination from NMR chemical shifts. Proc Natl Acid Sci USA 104:9615–9620

    Article  ADS  Google Scholar 

  • Chandonia J-M, Brenner SE (2006) The impact of structural genomics: expectations and outcomes. Science 311:347–351

    Article  ADS  Google Scholar 

  • Chen TC, Hsiao CL, Huang SJ, Huang JR (2016) The nearest-neighbor effect on random-coil nmr chemical shifts demonstrated using a low-complexity amino-acid sequence. Protein Pept Lett 23:967–975

    Article  Google Scholar 

  • Cornilescu G, Delaglio F, Bax A (1999) Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J Biomol NMR 13:289–302

    Article  Google Scholar 

  • De Simone A et al (2009) Accurate random coil chemical shifts from an analysis of loop regions in native states of proteins. J Am Chem Soc 131:16332–16333

    Article  Google Scholar 

  • Dunker AK et al (2002) Intrinsic disorder and protein function. Biochemistry 41:6573–6582

    Article  Google Scholar 

  • Dyson HJ, Wright PE (2005) Intrinsically unstructured proteins and their functions. Nat Rev Mol Cell Biol 6:197–208

    Article  Google Scholar 

  • Eliezer D et al (2005) Residual structure in the repeat domain of tau: echoes of microtubule binding and paired helical filament formation. Biochemistry 44:1026–1036

    Article  Google Scholar 

  • Felli IC, Pierattelli R (2012) Recent progress in NMR spectroscopy: toward the study of intrinsically disordered proteins of increasing size and complexity. IUBMB Life 64:473–481

    Article  Google Scholar 

  • Georgiev AG (2009) Interpretable numerical descriptors of amino acid space. J Comput Biol 16:703–723

    Article  Google Scholar 

  • Han B, Liu YF, Ginzinger SW, Wishart DS (2011) SHIFTX2: significantly improved protein chemical shift prediction. J Biomol NMR 50:43–57

    Article  Google Scholar 

  • Hatzopoulos GN et al (2013) Structural analysis of the G-box domain of the microcephaly protein CPAP suggests a role in centriole architecture. Structure 21:2069–2077

    Article  Google Scholar 

  • Isaksson L et al (2013) Highly efficient NMR Assignment of intrinsically disordered proteins: application to B- and T cell receptor domains. PLoS ONE 8:e62947

    Article  ADS  Google Scholar 

  • Jung YS, Zweckstetter M (2004) Mars—robust automatic backbone assignment of proteins. J Biomol NMR 30:11–23

    Article  Google Scholar 

  • Kjaergaard M, Poulsen FM (2011) Sequence correction of random coil chemical shifts: correlation between neighbor correction factors and changes in the Ramachandran distribution. J Biomol NMR 50:157–165

    Article  Google Scholar 

  • Kjaergaard M, Poulsen FM (2012) Disordered proteins studied by chemical shifts. Prog Nucl Magn Reson Spectrosc 60:42–51

    Article  Google Scholar 

  • Kjaergaard M et al (2010) Temperature-dependent structural changes in intrinsically disordered proteins: formation of alpha-helices or loss of polyproline II? Protein Sci 19:1555–1564

    Article  Google Scholar 

  • Kjaergaard M, Brander S, Poulsen FM (2011) Random coil chemical shift for intrinsically disordered proteins: effects of temperature and pH. J Biomol NMR 49:139–149

    Article  Google Scholar 

  • Kohlhoff KJ et al (2009) Fast and accurate predictions of protein NMR chemical shifts from interatomic distances. J Am Chem Soc 131:13894–13895

    Article  Google Scholar 

  • Kragelj J, Ozenne V, Blackledge M, Jensen MR (2013) Conformational propensities of intrinsically disordered proteins from NMR chemical shifts. Chemphyschem 14:3034–3045

    Article  Google Scholar 

  • Lee W, Tonelli M, Markley JL (2015) NMRFAM-SPARKY: enhanced software for biomolecular NMR spectroscopy. Bioinformatics 31:1325–1327

    Article  Google Scholar 

  • Marsh JA, Singh VK, Jia Z, Forman-Kay JD (2006) Sensitivity of secondary structure propensities to sequence differences between alpha- and gamma-synuclein: implications for fibrillation. Protein Sci 15:2795–2804

    Article  Google Scholar 

  • Meiler J (2003) PROSHIFT: Protein chemical shift prediction using artificial neural networks. J Biomol NMR 26:25–37

    Article  Google Scholar 

  • Merutka G, Dyson HJ, Wright PE (1995) ‘Random coil’ 1H chemical shifts obtained as a function of temperature and trifluoroethanol concentration for the peptide series GGXGG. J Biomol NMR 5:14–24

    Article  Google Scholar 

  • Modig K et al (2007) Detection of initiation sites in protein folding of the four helix bundle ACBP by chemical shift analysis. FEBS Lett 581:4965–4971

    Article  Google Scholar 

  • Montelione GT et al (2000) Protein NMR spectroscopy in structural genomics. Nat Struct Biol 7:982–985

    Article  Google Scholar 

  • Moseley HNB, Monleon D, Montelione GT (2001) Automatic determination of protein backbone resonance assignments from triple resonance nuclear magnetic resonance data. Nucl Magn Reson Biol Macromol Pt B 339:91–108

    Article  Google Scholar 

  • Mukrasch MD et al (2005) Sites of tau important for aggregation populate (beta)-structure and bind to microtubules and polyanions. J Biol Chem 280:24978–24986

    Article  Google Scholar 

  • Neal S, Nip AM, Zhang HY, Wishart DS (2003) Rapid and accurate calculation of protein H-1, C-13 and N-15 chemical shifts. J Biomol NMR 26:215–240

    Article  Google Scholar 

  • Needleman SB, Wunsch CD (1970) A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Molec Biol 48:443–453

    Article  Google Scholar 

  • Nielsen JT, Mulder FAA (2016) There is diversity in disorder—“In all chaos there is a cosmos, in all disorder a secret order”. Front Mol Biosci 3:4

    Article  Google Scholar 

  • Nielsen JT, Nielsen NC (2014) VirtualSpectrum, a tool for simulating peak list for multi-dimensional NMR spectra. J Biomol NMR 60:51–66

    Article  Google Scholar 

  • Nielsen JT, Eghbalnia HR, Nielsen NC (2012) Chemical shift prediction for protein structure calculation and quality assessment using an optimally parameterized force field. Progr Nucl Magn Reson Spectrosc 60:1–28

    Article  Google Scholar 

  • Nielsen JT et al (2016) In situ high-resolution structure of the baseplate antenna complex in Chlorobaculum tepidum. Nat Commun 7:12454

    Article  ADS  Google Scholar 

  • Oezguen N et al (2002) Automated assignment and 3D structure calculations using combinations of 2D homonuclear and 3D heteronuclear NOESY spectra. J Biomol NMR 22:249–263

    Article  Google Scholar 

  • Perez Y, Gairi M, Pons M, Bernado P (2009) Structural characterization of the natively unfolded N-terminal domain of human c-Src kinase: insights into the role of phosphorylation of the unique domain. J Mol Biol 391:136–148

    Article  Google Scholar 

  • Piai A et al (2014) “CON-CON’’ assignment strategy for highly flexible intrinsically disordered proteins. J Biomol NMR 60:209–218

    Article  Google Scholar 

  • Piai A et al (2016) Amino acid recognition for automatic resonance assignment of intrinsically disordered proteins. J Biomol NMR 64:239–253

    Article  Google Scholar 

  • Platzer G, Okon M, McIntosh LP (2014) pH-dependent random coil (1)H, (13)C, and (15)N chemical shifts of the ionizable amino acids: a guide for protein pK a measurements. J Biomol NMR 60:109–129

    Article  Google Scholar 

  • Ramachandran GN, Ramakrishnan C, Sasisekharan V (1963) Stereochemistry of polypeptide chain configurations. J Mol Biol 7:95–99

    Article  Google Scholar 

  • Richarz R, Wüthrich K (1978) Carbon-13 NMR chemical shifts of the common amino acid residues measured in aqueous solutions of the linear tetrapeptides H-Gly-Gly-X-L-Ala-OH. Biopolymers 17:2133–2141

    Article  Google Scholar 

  • Romero P et al (2001) Sequence complexity of disordered protein. Proteins 42:38–48

    Article  Google Scholar 

  • Rosato A et al (2012) Blind testing of routine, fully automated determination of protein structures from NMR data. Structure 20:227–236

    Article  Google Scholar 

  • Schmidt E, Guntert P (2012) A new algorithm for reliable and general NMR resonance assignment. J Am Chem Soc 134:12817–12829

    Article  Google Scholar 

  • Schwarzinger S et al (2000) Random coil chemical shifts in acidic 8 M urea: implementation of random coil shift data in NMRView. J Biomol NMR 18:43–48

    Article  Google Scholar 

  • Schwarzinger S et al (2001) Sequence-dependent correction of random coil NMR chemical shifts. J Am Chem Soc 123:2970–2978

    Article  Google Scholar 

  • Shen Y, Bax A (2007) Protein backbone chemical shifts predicted from searching a database for torsion angle and sequence homology. J Biomol NMR 38:289–302

    Article  Google Scholar 

  • Shen Y et al (2008) Consistent blind protein structure generation from NMR chemical shift data. Proc Natl Acid Sci USA 105:4685–4690

    Article  ADS  Google Scholar 

  • Shen Y, Delaglio F, Cornilescu G, Bax A (2009) TALOS plus: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J Biomol NMR 44:213–223

    Article  Google Scholar 

  • Simon M, Hancock JM (2009) Tandem and cryptic amino acid repeats accumulate in disordered regions of proteins. Gen Biol 10:R59-R59

    Article  Google Scholar 

  • Simons KT, Strauss C, Baker D (2001) Prospects for ab initio protein structural genomics. J Mol Biol 306:1191–1199

    Article  Google Scholar 

  • Singarapu KK et al (2011) Structural characterization of Hsp12, the heat shock protein from Saccharomyces cerevisiae, in aqueous solution where it is intrinsically disordered and in detergent micelles where it is locally alpha-helical. J Biol Chem 286:43447–43453

    Article  Google Scholar 

  • Spera S, Bax A (1991) Empirical correlation between protein backbone conformation and C. alpha. and C. beta. 13C nuclear magnetic resonance chemical shifts. J Am Chem Soc 113:5490–5492

    Article  Google Scholar 

  • Stone M (1977) Asymptotics for and against cross-validation. Biometrika 64:29–35

    Article  MathSciNet  MATH  Google Scholar 

  • Tamiola K, Mulder FAA (2011) ncIDP-assign: a SPARKY extension for the effective NMR assignment of intrinsically disordered proteins. Bioinformatics 27:1039–1040

    Article  Google Scholar 

  • Tamiola K, Mulder FAA (2012) Using NMR chemical shifts to calculate the propensity for structural order and disorder in proteins. Biochem Soc Trans 40:1014–1020

    Article  Google Scholar 

  • Tamiola K, Acar B, Mulder FAA (2010) Sequence-specific random coil chemical shifts of intrinsically disordered proteins. J Am Chem Soc 132:18000–18003

    Article  Google Scholar 

  • Tamiola K, Scheek RM, Meulen P, Mulder FAA (2018) PepKalc-scalable and comprehensive calculation of electrostatic interactions in random coil polypeptides. Bioinformatics. https://doi.org/10.1093/bioinformatics/bty033

    Google Scholar 

  • Theil H, Theil H (1971) Principles of econometrics

  • Ting D et al (2010) Neighbor-dependent Ramachandran probability distributions of amino acids developed from a hierarchical Dirichlet process model. PLoS Comput Biol 6:e1000763

    Article  MathSciNet  Google Scholar 

  • van der Lee R et al (2014) Classification of intrinsically disordered regions and proteins. Chem Rev 114:6589–6631

    Article  Google Scholar 

  • Verdegem D, Dijkstra K, Hanoulle X, Lippens G (2008) Graphical interpretation of Boolean operators for protein NMR assignments. J Biomol NMR 42:11–21

    Article  Google Scholar 

  • Wang G, Dunbrack RL Jr (2003) PISCES: a protein sequence culling server. Bioinformatics 19:1589–1591

    Article  Google Scholar 

  • Wang Y, Jardetzky O (2002) Investigation of the neighboring residue effects on protein chemical shifts. J Am Chem Soc 124:14075–14084

    Article  Google Scholar 

  • Wang L, Eghbalnia HR, Bahrami A, Markley JL (2005) Linear analysis of carbon-13 chemical shift differences and its application to the detection and correction of errors in referencing and spin system identifications. J Biomol NMR 32:13–22

    Article  Google Scholar 

  • Ward JJ et al (2004) Prediction and functional analysis of native disorder in proteins from the three kingdoms of life. J Mol Biol 337:635–645

    Article  Google Scholar 

  • Wilk MB, Gnanadesikan R (1968) Probability plotting methods for the analysis of data. Biometrika 55:1–17

    Google Scholar 

  • Williamson MP (1990) Secondary-structure dependent chemical shifts in proteins. Biopolymers 29:1423–1431

    Article  Google Scholar 

  • Williamson MP, Craven CJ (2009) Automated protein structure calculation from NMR data. J Biomol NMR 43:131–143

    Article  Google Scholar 

  • Wishart DS, Sykes BD, Richards FM (1991) Relationship between nuclear magnetic resonance chemical shift and protein secondary structure. J Mol Biol 222:311–333

    Article  Google Scholar 

  • Wishart DS et al (1995) 1H, 13C and 15N random coil NMR chemical shifts of the common amino acids. I. Investigations of nearest-neighbor effects. J Biomol NMR 5:67–81

    Article  Google Scholar 

  • Wold S, Esbensen K, Geladi P (1987) Principal component analysis. Chemom Intell Lab Syst 2:37–52

    Article  Google Scholar 

  • Wright PE, Dyson HJ (2015) Intrinsically disordered proteins in cellular signalling and regulation. Nat Rev Mol Cell Biol 16:18–29

    Article  Google Scholar 

  • Zawadzka-Kazimierczuk A, Kozminski W, Billeter M (2012) TSAR: a program for automatic resonance assignment using 2D cross-sections of high dimensionality, high-resolution spectra. J Biomol NMR 54:81–95

    Article  Google Scholar 

  • Zhang HY, Neal S, Wishart DS (2003) RefDB: a database of uniformly referenced protein chemical shifts. J Biomol NMR 25:173–195

    Article  Google Scholar 

  • Zhang ZY, Porter J, Tripsianes K, Lange OF (2014) Robust and highly accurate automatic NOESY assignment and structure determination with Rosetta. J Biomol NMR 59:135–145

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jakob Toudahl Nielsen or Frans A. A. Mulder.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1721 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nielsen, J.T., Mulder, F.A.A. POTENCI: prediction of temperature, neighbor and pH-corrected chemical shifts for intrinsically disordered proteins. J Biomol NMR 70, 141–165 (2018). https://doi.org/10.1007/s10858-018-0166-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-018-0166-5

Keywords

Navigation