Advertisement

Journal of Biomolecular NMR

, Volume 66, Issue 3, pp 209–219 | Cite as

Solution NMR structure of the HLTF HIRAN domain: a conserved module in SWI2/SNF2 DNA damage tolerance proteins

  • Dmitry M. Korzhnev
  • Dante Neculai
  • Sirano Dhe-Paganon
  • Cheryl H. Arrowsmith
  • Irina Bezsonova
Article

Abstract

HLTF is a SWI2/SNF2-family ATP-dependent chromatin remodeling enzyme that acts in the error-free branch of DNA damage tolerance (DDT), a cellular mechanism that enables replication of damaged DNA while leaving damage repair for a later time. Human HLTF and a closely related protein SHPRH, as well as their yeast homologue Rad5, are multi-functional enzymes that share E3 ubiquitin-ligase activity required for activation of the error-free DDT. HLTF and Rad5 also function as ATP-dependent dsDNA translocases and possess replication fork reversal activities. Thus, they can convert Y-shaped replication forks into X-shaped Holliday junction structures that allow error-free replication over DNA lesions. The fork reversal activity of HLTF is dependent on 3′-ssDNA-end binding activity of its N-terminal HIRAN domain. Here we present the solution NMR structure of the human HLTF HIRAN domain, an OB-like fold module found in organisms from bacteria (as a stand-alone domain) to plants, fungi and metazoan (in combination with SWI2/SNF2 helicase-like domain). The obtained structure of free HLTF HIRAN is similar to recently reported structures of its DNA bound form, while the NMR analysis also reveals that the DNA binding site of the free domain exhibits conformational heterogeneity. Sequence comparison of N-terminal regions of HLTF, SHPRH and Rad5 aided by knowledge of the HLTF HIRAN structure suggests that the SHPRH N-terminus also includes an uncharacterized structured module, exhibiting weak sequence similarity with HIRAN regions of HLTF and Rad5, and potentially playing a similar functional role.

Keywords

DNA replication DNA damage tolerance Helicase-like transcription factor HLTF 

Notes

Acknowledgments

This work was supported by Connecticut Department of Public Health Biomedical Research Grant (DPH-UCHC BIOMED 2013-0203) and Connecticut Innovation Research Grant (13-SCA-UCHC-03). Research in the Bezsonova and Korzhnev labs is supported by NSF MCB (1616184, IB; 1615866, DK). The SGC is a registered charity (number 1097737) that receives funds from AbbVie, Bayer, Boehringer Ingelheim, Genome Canada through the Ontario Genomics Institute [OGI-055], GlaxoSmithKline, Janssen, Lilly Canada, the Novartis Research Foundation, the Ontario Ministry of Economic Development and Innovation, Pfizer, Takeda, and the Wellcome Trust [092809/Z/10/Z].

References

  1. Achar YJ, Balogh D, Neculai D, Juhasz S, Morocz M, Gali H, Dhe-Paganon S, Venclovas C, Haracska L (2015) Human HLTF mediates postreplication repair by its HIRAN domain-dependent replication fork remodelling. Nucleic Acids Res 43(21):10277–10291Google Scholar
  2. Agrawal V, Kishan KV (2003) OB-fold: growing bigger with functional consistency. Curr Protein Pept Sci 4(3):195–206CrossRefGoogle Scholar
  3. Arcus V (2002) OB-fold domains: a snapshot of the evolution of sequence, structure and function. Curr Opin Struct Biol 12(6):794–801CrossRefGoogle Scholar
  4. Armon A, Graur D, Ben-Tal N (2001) ConSurf: an algorithmic tool for the identification of functional regions in proteins by surface mapping of phylogenetic information. J Mol Biol 307(1):447–463CrossRefGoogle Scholar
  5. Ashkenazy H, Erez E, Martz E, Pupko T, Ben-Tal N (2010) ConSurf 2010: calculating evolutionary conservation in sequence and structure of proteins and nucleic acids. Nucleic Acids Res 38(Web Server issue):W529–W533CrossRefGoogle Scholar
  6. Blastyak A, Pinter L, Unk I, Prakash L, Prakash S, Haracska L (2007) Yeast Rad5 protein required for postreplication repair has a DNA helicase activity specific for replication fork regression. Mol Cell 28(1):167–175CrossRefGoogle Scholar
  7. Blastyak A, Hajdu I, Unk I, Haracska L (2010) Role of double-stranded DNA translocase activity of human HLTF in replication of damaged DNA. Mol Cell Biol 30(3):684–693CrossRefGoogle Scholar
  8. Branzei D, Psakhye I (2016) DNA damage tolerance. Curr Opin Cell Biol 40:137–144CrossRefGoogle Scholar
  9. Brunger AT (2007) Version 1.2 of the crystallography and NMR system. Nat Protoc 2(11):2728–2733CrossRefGoogle Scholar
  10. Brunger AT, Adams PD, Clore GM, DeLano WL, Gros P, Grosse-Kunstleve RW, Jiang JS, Kuszewski J, Nilges M, Pannu NS, Read RJ, Rice LM, Simonson T, Warren GL (1998) Crystallography and NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr Sect D Biol Crystallogr 54:905–921CrossRefGoogle Scholar
  11. Callegari AJ, Kelly TJ (2016) Coordination of DNA damage tolerance mechanisms with cell cycle progression in fission yeast. Cell Cycle 15(2):261–273CrossRefGoogle Scholar
  12. Chang DJ, Cimprich KA (2009) DNA damage tolerance: when it’s OK to make mistakes. Nat Chem Biol 5(2):82–90CrossRefGoogle Scholar
  13. Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPIPE—a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6(3):277–293CrossRefGoogle Scholar
  14. Ding H, Descheemaeker K, Marynen P, Nelles L, Carvalho T, Carmo-Fonseca M, Collen D, Belayew A (1996) Characterization of a helicase-like transcription factor involved in the expression of the human plasminogen activator inhibitor-1 gene. DNA Cell Biol 15(6):429–442CrossRefGoogle Scholar
  15. Ding H, Benotmane AM, Suske G, Collen D, Belayew A (1999) Functional interactions between Sp1 or Sp3 and the helicase-like transcription factor mediate basal expression from the human plasminogen activator inhibitor-1 gene. J Biol Chem 274(28):19573–19580CrossRefGoogle Scholar
  16. Flaus A, Martin DMA, Barton GJ, Owen-Hughes T (2006) Identification of multiple distinct Snf2 subfamilies with conserved structural motifs. Nucleic Acids Res 34(10):2887–2905CrossRefGoogle Scholar
  17. Goddard TD, Kneller DG, SPARKY 3. University of California, San FranciscoGoogle Scholar
  18. Goldenberg O, Erez E, Nimrod G, Ben-Tal N (2009) The ConSurf-DB: pre-calculated evolutionary conservation profiles of protein structures. Nucleic Acids Res 37(Database issue):D323–D327CrossRefGoogle Scholar
  19. Guntert P (2004) Automated NMR structure calculation with CYANA. Methods Mol Biol 278:353–378Google Scholar
  20. Guntert P, Buchner L (2015) Combined automated NOE assignment and structure calculation with CYANA. J Biomol NMR 62(4):453–471CrossRefGoogle Scholar
  21. Hishiki A, Hara K, Ikegaya Y, Yokoyama H, Shimizu T, Sato M, Hashimoto H (2015) Structure of a novel DNA-binding domain of helicase-like transcription factor (HLTF) and its functional implication in DNA damage tolerance. J Biol Chem 290(21):13215–13223CrossRefGoogle Scholar
  22. Hoege C, Pfander B, Moldovan GL, Pyrowolakis G, Jentsch S (2002) RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419(6903):135–141ADSCrossRefGoogle Scholar
  23. Huang YJ, Powers R, Montelione GT (2005) Protein NMR recall, precision, and F-measure scores (RPF scores): structure quality assessment measures based on information retrieval statistics. J Am Chem Soc 127(6):1665–1674CrossRefGoogle Scholar
  24. Huang YJ, Tejero R, Powers R, Montelione GT (2006) A topology-constrained distance network algorithm for protein structure determination from NOESY data. Proteins 62(3):587–603CrossRefGoogle Scholar
  25. Iyer LM, Babu MM, Aravind L (2006) The HIRAN domain and recruitment of chromatin remodeling and repair activities to damaged DNA. Cell Cycle 5(7):775–782CrossRefGoogle Scholar
  26. Kallberg M, Margaryan G, Wang S, Ma J, Xu J (2014) RaptorX server: a resource for template-based protein structure modeling. Methods Mol Biol 1137:17–27CrossRefGoogle Scholar
  27. Kanelis V, Forman-Kay JD, Kay LE (2001) Multidimensional NMR methods for protein structure determination. IUBMB Life 52(6):291–302CrossRefGoogle Scholar
  28. Kay LE (1995) Pulsed field gradient multi-dimensional NMR methods for the study of protein structure and dynamics in solution. Prog Biophys Mol Biol 63(3):277–299CrossRefGoogle Scholar
  29. Kay LE (1997) NMR methods for the study of protein structure and dynamics. Biochem Cell Biol 75(1):1–15MathSciNetCrossRefGoogle Scholar
  30. Kerr ID, Wadsworth RI, Cubeddu L, Blankenfeldt W, Naismith JH, White MF (2003) Insights into ssDNA recognition by the OB fold from a structural and thermodynamic study of Sulfolobus SSB protein. EMBO J 22(11):2561–2570CrossRefGoogle Scholar
  31. Kile AC, Chavez DA, Bacal J, Eldirany S, Korzhnev DM, Bezsonova I, Eichman BF, Cimprich KA (2015) HLTF’s ancient HIRAN domain binds 3′DNA ends to drive replication fork reversal. Mol Cell 58(6):1090–1100CrossRefGoogle Scholar
  32. Letunic I, Bork P (2007) Interactive tree of life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics 23(1):127–128CrossRefGoogle Scholar
  33. Letunic I, Bork P (2011) Interactive Tree Of Life v2: online annotation and display of phylogenetic trees made easy. Nucleic Acids Res 39(Web Server issue):W475–W478CrossRefGoogle Scholar
  34. Letunic I, Copley RR, Pils B, Pinkert S, Schultz J, Bork P (2006) SMART 5: domains in the context of genomes and networks. Nucleic Acids Res 34(Database issue):D257–D260CrossRefGoogle Scholar
  35. Letunic I, Doerks T, Bork P (2015) SMART: recent updates, new developments and status in 2015. Nucleic Acids Res 43(1):D257–D260CrossRefGoogle Scholar
  36. Machado LE, Pustovalova Y, Kile AC, Pozhidaeva A, Cimprich KA, Almeida FC, Bezsonova I, Korzhnev DM (2013) PHD domain from human SHPRH. J Biomol NMR 56(4):393–399CrossRefGoogle Scholar
  37. Mahajan MC, Weissman SM (2002) DNA-dependent adenosine triphosphatase (helicaselike transcription factor) activates beta-globin transcription in K562 cells. Blood 99(1):348–356CrossRefGoogle Scholar
  38. Motegi A, Sood R, Moinova H, Markowitz SD, Liu PP, Myung K (2006) Human SHPRH suppresses genomic instability through proliferating cell nuclear antigen polyubiquitination. J Cell Biol 175(5):703–708CrossRefGoogle Scholar
  39. Motegi A, Liaw H-J, Lee K-Y, Roest HP, Maas A, Wu X, Moinova H, Markowitz SD, Ding H, Hoeijmakers JHJ, Myung K (2008) Polyubiquitination of proliferating cell nuclear antigen by HLTF and SHPRH prevents genomic instability from stalled replication forks. Proc Natl Acad Sci USA 105(34):12411–12416ADSCrossRefGoogle Scholar
  40. Murzin AG (1993) OB(oligonucleotide/oligosaccharide binding)-fold: common structural and functional solution for non-homologous sequences. EMBO J 12(3):861–867Google Scholar
  41. Sale JE, Lehmann AR, Woodgate R (2012) Y-family DNA polymerases and their role in tolerance of cellular DNA damage. Nat Rev Mol Cell Biol 13(3):141–152CrossRefGoogle Scholar
  42. Schultz J, Milpetz F, Bork P, Ponting CP (1998) SMART, a simple modular architecture research tool: identification of signaling domains. Proc Natl Acad Sci USA 95(11):5857–5864ADSCrossRefGoogle Scholar
  43. Shen Y, Delaglio F, Cornilescu G, Bax A (2009) TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J Biomol NMR 44(4):213–223CrossRefGoogle Scholar
  44. Sheridan PL, Schorpp M, Voz ML, Jones KA (1995) Cloning of an SNF2/SWI2-related protein that binds specifically to the SPH motifs of the SV40 enhancer and to the HIV-1 promoter. J Biol Chem 270(9):4575–4587CrossRefGoogle Scholar
  45. Sievers F, Higgins DG (2014) Clustal Omega, accurate alignment of very large numbers of sequences. Methods Mol Biol 1079:105–116CrossRefGoogle Scholar
  46. Theobald DL, Mitton-Fry RM, Wuttke DS (2003) Nucleic acid recognition by OB-fold proteins. Annu Rev Biophys Biomol Struct 32:115–133CrossRefGoogle Scholar
  47. Thoma NH, Czyzewski BK, Alexeev AA, Mazin AV, Kowalczykowski SC, Pavletich NP (2005) Structure of the SWI2/SNF2 chromatin-remodeling domain of eukaryotic Rad54. Nat Struct Mol Biol 12(4):350–356CrossRefGoogle Scholar
  48. Unk I, Hajdu I, Fatyol K, Szakal B, Blastyak A, Bermudez V, Hurwitz J, Prakash L, Prakash S, Haracska L (2006) Human SHPRH is a ubiquitin ligase for Mms2-Ubc13-dependent polyubiquitylation of proliferating cell nuclear antigen. Proc Natl Acad Sci USA 103(48):18107–18112ADSCrossRefGoogle Scholar
  49. Unk I, Hajdu I, Fatyol K, Hurwitz J, Yoon J-H, Prakash L, Prakash S, Haracska L (2008) Human HLTF functions as a ubiquitin ligase for proliferating cell nuclear antigen polyubiquitination. Proc Natl Acad Sci USA 105(10):3768–3773ADSCrossRefGoogle Scholar
  50. Unk I, Hajdu I, Blastyak A, Haracska L (2010) Role of yeast Rad5 and its human orthologs, HLTF and SHPRH in DNA damage tolerance. DNA Repair 9(3):257–267CrossRefGoogle Scholar
  51. Wang Z, Zhao F, Peng J, Xu J (2011) Protein 8-class secondary structure prediction using conditional neural fields. Proteomics 11(19):3786–3792CrossRefGoogle Scholar
  52. Waters LS, Minesinger BK, Wiltrout ME, D’Souza S, Woodruff RV, Walker GC (2009) Eukaryotic translesion polymerases and their roles and regulation in DNA damage tolerance. Microbiol Mol Biol Rev 73(1):134–154CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Dmitry M. Korzhnev
    • 1
  • Dante Neculai
    • 2
  • Sirano Dhe-Paganon
    • 3
  • Cheryl H. Arrowsmith
    • 4
    • 5
  • Irina Bezsonova
    • 1
  1. 1.Department of Molecular Biology and BiophysicsUniversity of Connecticut HealthFarmingtonUSA
  2. 2.School of MedicineZhejiang UniversityHangzhouChina
  3. 3.Department of Cancer BiologyDana-Farber Cancer InstituteBostonUSA
  4. 4.Structural Genomics ConsortiumUniversity of TorontoTorontoCanada
  5. 5.Department of Medical Biophysics, Princess Margaret Cancer CentreUniversity of TorontoTorontoCanada

Personalised recommendations