Journal of Biomolecular NMR

, Volume 65, Issue 2, pp 99–108 | Cite as

Exploiting E. coli auxotrophs for leucine, valine, and threonine specific methyl labeling of large proteins for NMR applications

  • Yoan R. Monneau
  • Yojiro Ishida
  • Paolo Rossi
  • Tomohide Saio
  • Shiou-Ru Tzeng
  • Masayori Inouye
  • Charalampos G. Kalodimos


A simple and cost effective method to independently and stereo-specifically incorporate [1H,13C]-methyls in Leu and Val in proteins is presented. Recombinant proteins for NMR studies are produced using a tailored set of auxotrophic E. coli strains. NMR active isotopes are routed to either Leu or Val methyl groups from the commercially available and scrambling-free precursors α-ketoisovalerate and acetolactate. The engineered strains produce deuterated proteins with stereospecific [1H,13C]-methyl labeling separately at Leu or Val amino acids. This is the first method that achieves Leu-specific stereospecific [1H,13C]-methyl labeling of proteins and scramble-free Val-specific labeling. Use of auxotrophs drastically decreases the amount of labeled precursor required for expression without impacting the yield. The concept is extended to Thr methyl labeling by means of a Thr-specific auxotroph that provides enhanced efficiency for use with the costly L-[4-13C,2,3-2H2,15N]-Thr reagent. The Thr-specific strain allows for the production of Thr-[13CH3]γ2 labeled protein with an optimal isotope incorporation using up to 50 % less labeled Thr than the traditional E. coli strain without the need for 2H-glycine to prevent scrambling.


Methyl labeling Large proteins Auxotrophic strains NMR 

Supplementary material

10858_2016_41_MOESM1_ESM.docx (1.5 mb)
Supplementary material 1 (DOCX 1511 kb)


  1. Amero C, Asuncion Dura M, Noirclerc-Savoye M, Perollier A, Gallet B, Plevin MJ, Vernet T, Franzetti B, Boisbouvier J (2011) A systematic mutagenesis-driven strategy for site-resolved NMR studies of supramolecular assemblies. J Biomol NMR 50:229–236CrossRefGoogle Scholar
  2. Audin MJ, Dorn G, Fromm SA, Reiss K, Schutz S, Vorlander MK, Sprangers R (2013) The archaeal exosome: identification and quantification of site-specific motions that correlate with cap and RNA binding. Angew Chem Int Ed Engl 52:8312–8316CrossRefGoogle Scholar
  3. Ayala I, Sounier R, Use N, Gans P, Boisbouvier J (2009) An efficient protocol for the complete incorporation of methyl-protonated alanine in perdeuterated protein. J Biomol NMR 43:111–119CrossRefGoogle Scholar
  4. Chao FA, Shi L, Masterson LR, Veglia G (2012) FLAMEnGO: a fuzzy logic approach for methyl group assignment using NOESY and paramagnetic relaxation enhancement data. J Magn Reson 214:103–110ADSCrossRefGoogle Scholar
  5. Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293CrossRefGoogle Scholar
  6. Dumas R, Biou V, Halgand F, Douce R, Duggleby RG (2001) Enzymology, structure, and dynamics of acetohydroxy acid isomeroreductase. Acc Chem Res 34:399–408CrossRefGoogle Scholar
  7. Gans P, Hamelin O, Sounier R, Ayala I, Dura MA, Amero CD, Noirclerc-Savoye M, Franzetti B, Plevin MJ, Boisbouvier J (2010) Stereospecific isotopic labeling of methyl groups for NMR spectroscopic studies of high-molecular-weight proteins. Angew Chem Int Ed Engl 49:1958–1962CrossRefGoogle Scholar
  8. Gardner KH, Kay LE (1997) Production and incorporation of N-15, C-13, H-2 (H-1-delta 1 methyl) isoleucine into proteins for multidimensional NMR studies. J Am Chem Soc 119:7599–7600CrossRefGoogle Scholar
  9. Gelis I, Bonvin AM, Keramisanou D, Koukaki M, Gouridis G, Karamanou S, Economou A, Kalodimos CG (2007) Structural basis for signal-sequence recognition by the translocase motor Sec A as determined by NMR. Cell 131:756–769CrossRefGoogle Scholar
  10. Goto NK, Gardner KH, Mueller GA, Willis RC, Kay LE (1999) A robust and cost-effective method for the production of Val, Leu, Ile (delta 1) methyl-protonated N-15-, C-13-, H-2-labeled proteins. J Biomol NMR 13:369–374CrossRefGoogle Scholar
  11. Isaacson RL, Simpson PJ, Liu M, Cota E, Zhang X, Freemont P, Matthews S (2007) A new labeling method for methyl transverse relaxation-optimized spectroscopy NMR spectra of alanine residues. J Am Chem Soc 129:15428–15429CrossRefGoogle Scholar
  12. Karagoz GE, Duarte AM, Ippel H, Uetrecht C, Sinnige T, van Rosmalen M, Hausmann J, Heck AJ, Boelens R, Rudiger SG (2011) N-terminal domain of human Hsp90 triggers binding to the cochaperone p23. Proc Natl Acad Sci USA 108:580–585ADSCrossRefGoogle Scholar
  13. Kato H, van Ingen H, Zhou BR, Feng H, Bustin M, Kay LE, Bai Y (2011) Architecture of the high mobility group nucleosomal protein 2-nucleosome complex as revealed by methyl-based NMR. Proc Natl Acad Sci USA 108:12283–12288CrossRefGoogle Scholar
  14. Kay LE (2005) NMR studies of protein structure and dynamics. J Magn Reson 173:193–207ADSCrossRefGoogle Scholar
  15. Kerfah R, Plevin MJ, Pessey O, Hamelin O, Gans P, Boisbouvier J (2015a) Scrambling free combinatorial labeling of alanine-beta, isoleucine-delta1, leucine-proS and valine-proS methyl groups for the detection of long range NOEs. J Biomol NMR 61:73–82CrossRefGoogle Scholar
  16. Kerfah R, Plevin MJ, Sounier R, Gans P, Boisbouvier J (2015b) Methyl-specific isotopic labeling: a molecular tool box for solution NMR studies of large proteins. Curr Opin Struct Biol 32:113–122CrossRefGoogle Scholar
  17. Lichtenecker RJ, Coudevylle N, Konrat R, Schmid W (2013) Selective isotope labelling of leucine residues by using alpha-ketoacid precursor compounds. ChemBioChem 14:818–821CrossRefGoogle Scholar
  18. Mas G, Crublet E, Hamelin O, Gans P, Boisbouvier J (2013) Specific labeling and assignment strategies of valine methyl groups for NMR studies of high molecular weight proteins. J Biomol NMR 57:251–262CrossRefGoogle Scholar
  19. Metzler WJ, Wittekind M, Goldfarb V, Mueller L, Farmer BT (1996) Incorporation of 1H/13C/15 N-{Ile, Leu, Val} into a perdeuterated, 15N-labeled protein: potential in structure determination of large proteins by NMR. J Am Chem Soc 118:6800–6801CrossRefGoogle Scholar
  20. Miyanoiri Y, Takeda M, Okuma K, Ono AM, Terauchi T, Kainosho M (2013) Differential isotope-labeling for Leu and Val residues in a protein by E. coli cellular expression using stereo-specifically methyl labeled amino acids. J Biomol NMR 57:237–249CrossRefGoogle Scholar
  21. Pickford AR, Campbell ID (2004) NMR studies of modular protein structures and their interactions. Chem Rev 104:3557–3565CrossRefGoogle Scholar
  22. Popovych N, Tzeng SR, Tonelli M, Ebright RH, Kalodimos CG (2009) Structural basis for cAMP-mediated allosteric control of the catabolite activator protein. P Natl Acad Sci USA 106:6927–6932ADSCrossRefGoogle Scholar
  23. Religa TL, Sprangers R, Kay LE (2010) Dynamic regulation of archaeal proteasome gate opening as studied by TROSY NMR. Science 328:98–102ADSCrossRefGoogle Scholar
  24. Rosenzweig R, Kay LE (2014) Bringing dynamic molecular machines into focus by methyl-TROSY NMR. Annu Rev Biochem 83:291–315CrossRefGoogle Scholar
  25. Rosenzweig R, Moradi S, Zarrine-Afsar A, Glover JR, Kay LE (2013) Unraveling the mechanism of protein disaggregation through a ClpB-DnaK interaction. Science 339:1080–1083ADSCrossRefGoogle Scholar
  26. Ruschak AM, Velyvis A, Kay LE (2010) A simple strategy for (1)(3)C, (1)H labeling at the Ile-gamma2 methyl position in highly deuterated proteins. J Biomol NMR 48:129–135CrossRefGoogle Scholar
  27. Saio T, Guan X, Rossi P, Economou A, Kalodimos CG (2014) Structural basis for protein antiaggregation activity of the trigger factor chaperone. Science 344:1250494CrossRefGoogle Scholar
  28. Sinha K, Jen-Jacobson L, Rule GS (2011) Specific labeling of threonine methyl groups for NMR studies of protein-nucleic acid complexes. Biochemistry 50:10189–10191CrossRefGoogle Scholar
  29. Sounier R, Blanchard L, Wu ZR, Boisbouvier J (2007) High-accuracy distance measurement between remote methyls in specifically protonated proteins. J Am Chem Soc 129:472–473CrossRefGoogle Scholar
  30. Sprangers R, Kay LE (2007) Quantitative dynamics and binding studies of the 20S proteasome by NMR. Nature 445:618–622CrossRefGoogle Scholar
  31. Tugarinov V, Kay LE (2003) Ile, Leu, and Val methyl assignments of the 723-residue malate synthase G using a new labeling strategy and novel NMR methods. J Am Chem Soc 125:13868–13878CrossRefGoogle Scholar
  32. Tugarinov V, Kay LE (2005) Methyl groups as probes of structure and dynamics in NMR studies of high-molecular-weight proteins. Chem Bio Chem 6:1567–1577CrossRefGoogle Scholar
  33. Tugarinov V, Kanelis V, Kay LE (2006) Isotope labeling strategies for the study of high-molecular-weight proteins by solution NMR spectroscopy. Nat Protoc 1:749–754CrossRefGoogle Scholar
  34. Tzeng SR, Kalodimos CG (2012) Protein activity regulation by conformational entropy. Nature 488:236–240ADSCrossRefGoogle Scholar
  35. Tzeng SR, Pai MT, Kalodimos CG (2012) NMR studies of large protein systems. Methods Mol Biol 831:133–140CrossRefGoogle Scholar
  36. Velyvis A, Ruschak AM, Kay LE (2012) An economical method for production of (2)H, (13)CH3-threonine for solution NMR studies of large protein complexes: application to the 670 kDa proteasome. PLoS ONE 7:e43725ADSCrossRefGoogle Scholar
  37. Xu Y, Matthews S (2013) MAP-XSII: an improved program for the automatic assignment of methyl resonances in large proteins. J Biomol NMR 55:179–187CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Yoan R. Monneau
    • 1
  • Yojiro Ishida
    • 2
  • Paolo Rossi
    • 1
    • 3
  • Tomohide Saio
    • 1
  • Shiou-Ru Tzeng
    • 1
  • Masayori Inouye
    • 2
  • Charalampos G. Kalodimos
    • 1
    • 3
  1. 1.Center for Integrative Proteomics Research and Department of Chemistry and Chemical BiologyRutgers UniversityPiscatawayUSA
  2. 2.Center for Advanced Biotechnology and MedicineRutgers UniversityPiscatawayUSA
  3. 3.Deparment of Biochemistry, Molecular Biology and BiophysicsUniversity of MinnesotaMinneapolisUSA

Personalised recommendations