Skip to main content

Advertisement

Log in

Stable isotope labeling of glycoprotein expressed in silkworms using immunoglobulin G as a test molecule

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

Silkworms serve as promising bioreactors for the production of recombinant proteins, including glycoproteins and membrane proteins, for structural and functional protein analyses. However, lack of methodology for stable isotope labeling has been a major deterrent to using this expression system for nuclear magnetic resonance (NMR) structural biology. Here we developed a metabolic isotope labeling technique using commercially available silkworm larvae. The fifth instar larvae were infected with baculoviruses for co-expression of recombinant human immunoglobulin G (IgG) as a test molecule, with calnexin as a chaperone. They were subsequently reared on an artificial diet containing 15N-labeled yeast crude protein extract. We harvested 0.1 mg of IgG from larva with a 15N-enrichment ratio of approximately 80 %. This allowed us to compare NMR spectral data of the Fc fragment cleaved from the silkworm-produced IgG with those of an authentic Fc glycoprotein derived from mammalian cells. Therefore, we successfully demonstrated that our method enables production of isotopically labeled glycoproteins for NMR studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

BmNPV:

Bombyx mori nuclleopolyhedrovirus

EDTA:

Ethylenediaminetetraacetic acid

Fuc:

Fucose

Gal:

Galactose

GlcNAc:

N-Acetylglucosamine

HPLC:

High-performance liquid chromatography

HSQC:

Heteronuclear single-quantum coherence

IgG:

Immunoglobulin G

LC/MS:

Liquid chromatography/mass spectroscopy

Man:

Mannose

NMR:

Nuclear magnetic resonance

PTFE:

Polytetrafluoroethylene

TCA:

Trichloroacetic acid

References

  • Aburatani T, Ueda H, Nagamune T (2002) Importance of a CDR H3 basal residue in V(H)/V(L) interaction of human antibodies. J Biochem 132:775–782

    Article  Google Scholar 

  • Ailor E et al (2000) N-glycan patterns of human transferrin produced in Trichoplusia ni insect cells: effects of mammalian galactosyltransferase. Glycobiology 10:837–847

    Article  Google Scholar 

  • Breitbach K, Jarvis DL (2001) Improved glycosylation of a foreign protein by Tn-5B1-4 cells engineered to express mammalian glycosyltransferases. Biotechnol Bioeng 74:230–239. doi:10.1002/bit.1112

    Article  Google Scholar 

  • Cohen SA, Michaud DP (1993) Synthesis of a fluorescent derivatizing reagent, 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate, and its application for the analysis of hydrolysate amino acids via high-performance liquid chromatography. Anal Biochem 211:279–287. doi:10.1006/abio.1993.1270

    Article  Google Scholar 

  • de Marco A (2009) Strategies for successful recombinant expression of disulfide bond-dependent proteins in Escherichia coli. Microb Cell Fact 8:26. doi:10.1186/1475-2859-8-26

    Article  Google Scholar 

  • de Wildt RM, Mundy CR, Gorick BD, Tomlinson IM (2000) Antibody arrays for high-throughput screening of antibody–antigen interactions. Nat Biotechnol 18:989–994. doi:10.1038/79494

    Article  Google Scholar 

  • Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293

    Google Scholar 

  • DeLano WL (2002) The PyMOL molecular graphics system DeLano scientific. San Carlos, CA, USA

    Google Scholar 

  • Demain AL, Vaishnav P (2009) Production of recombinant proteins by microbes and higher organisms. Biotechnol Adv 27:297–306. doi:10.1016/j.biotechadv.2009.01.008

    Article  Google Scholar 

  • Dojima T, Nishina T, Kato T, Uno T, Yagi H, Kato K, Park EY (2009) Comparison of the N-linked glycosylation of human beta1, 3-N-acetylglucosaminyltransferase 2 expressed in insect cells and silkworm larvae. J Biotechnol 143:27–33. doi:10.1016/j.jbiotec.2009.06.013

    Article  Google Scholar 

  • Dojima T et al (2010) Improved secretion of molecular chaperone-assisted human IgG in silkworm, and no alterations in their N-linked glycan structures. Biotechnol Prog 26:232–238

    Google Scholar 

  • Dutta A, Saxena K, Schwalbe H, Klein-Seetharaman J (2012) Isotope labeling in mammalian cells. Methods Mol Biol 831:55–69. doi:10.1007/978-1-61779-480-3_4

    Google Scholar 

  • Goddard T, Kneller D (1993) SPARKY 3. University of California, San Francisco

    Google Scholar 

  • Harrison RL, Jarvis DL (2006) Protein N-glycosylation in the baculovirus-insect cell expression system and engineering of insect cells to produce “mammalianized” recombinant glycoproteins. Adv Virus Res 68:159–191. doi:10.1016/S0065-3527(06)68005-6

    Google Scholar 

  • Hirayama C, Konno K, Shinbo H (1996) Utilization of ammonia as a nitrogen source in the silkworm, Bombyx mori. J Insect Physiol 42:983–988

    Article  Google Scholar 

  • Hiyoshi M, Kageshima A, Kato T, Park EY (2007) Construction of a cysteine protease deficient Bombyx mori multiple nucleopolyhedrovirus bacmid and its application to improve expression of a fusion protein. J Virol Methods 144:91–97. doi:10.1016/j.jviromet.2007.04.005

    Article  Google Scholar 

  • Hollister JR, Jarvis DL (2001) Engineering lepidopteran insect cells for sialoglycoprotein production by genetic transformation with mammalian beta 1,4-galactosyltransferase and alpha 2,6-sialyltransferase genes. Glycobiology 11:1–9

    Article  Google Scholar 

  • Hollister J, Grabenhorst E, Nimtz M, Conradt H, Jarvis DL (2002) Engineering the protein N-glycosylation pathway in insect cells for production of biantennary, complex N-glycans. Biochemistry 41:15093–15104

    Article  Google Scholar 

  • Horie Y, Watanabe K, Ito T (1966) Nutrition of the silkworm, Bombyx mori XIV. Futher stuides on the requirements for B vitamins. Bull Seric Exp Sta 20:393–409

    Google Scholar 

  • Jarvis DL (2009) Baculovirus-insect cell expression systems. Methods Enzymol 463:191–222. doi:10.1016/S0076-6879(09)63014-7

    Google Scholar 

  • Kamiya Y, Yanagi K, Kitajima T, Yamaguchi T, Chiba Y, Kato K (2013) Application of metabolic 13C labeling in conjunction with high-field nuclear magnetic resonance spectroscopy for comparative conformational analysis of high mannose-type Oligosaccharides. Biomolecules 3:108–123. doi:10.3390/biom3010108

    Article  Google Scholar 

  • Kamiya Y, Satoh T, Kato K (2014) Recent advances in glycoprotein production for structural biology: toward tailored design of glycoforms. Curr Opin Struct Biol 26:44–53. doi:10.1016/j.sbi.2014.03.008

    Article  Google Scholar 

  • Kato K, Yamaguchi Y (2011) Glycoproteins and antibodies: solution NMR studies. In: Encyclopedia of magnetic resonance, vol (in press). Wiley, Chichester. DOI:10.1002/9780470034590

  • Kato K, Yamaguchi Y, Arata Y (2010a) Stable-isotope-assisted NMR approaches to glycoproteins using immunoglobulin G as a model system. Prog Nucl Magn Reson Spectrosc 56:346–359

    Article  Google Scholar 

  • Kato T, Kajikawa M, Maenaka K, Park EY (2010b) Silkworm expression system as a platform technology in life science. Appl Microbiol Biotechnol 85:459–470. doi:10.1007/s00253-009-2267-2

    Article  Google Scholar 

  • Matsumiya S et al (2007) Structural comparison of fucosylated and nonfucosylated Fc fragments of human immunoglobulin G1. J Mol Biol 368:767–779. doi:10.1016/j.jmb.2007.02.034

    Article  Google Scholar 

  • Motohashi T, Shimojima T, Fukagawa T, Maenaka K, Park EY (2005) Efficient large-scale protein production of larvae and pupae of silkworm by Bombyx mori nuclear polyhedrosis virus bacmid system. Biochem Biophys Res Commun 326:564–569

    Article  Google Scholar 

  • Ohki S, Dohi K, Tamai A, Takeuchi M, Mori M (2008) Stable-isotope labeling using an inducible viral infection system in suspension-cultured plant cells. J Biomol NMR 42:271–277. doi:10.1007/s10858-008-9283-x

    Article  Google Scholar 

  • Palmberger D, Rendic D, Tauber P, Krammer F, Wilson IB, Grabherr R (2011) Insect cells for antibody production: evaluation of an efficient alternative. J Biotechnol 153:160–166. doi:10.1016/j.jbiotec.2011.02.009

    Article  Google Scholar 

  • Park EY, Abe T, Kato T (2008) Improved expression of fusion protein using a cysteine- protease- and chitinase-deficient Bombyx mori (silkworm) multiple nucleopolyhedrovirus bacmid in silkworm larvae. Biotechnol Appl Biochem 49:135–140

    Article  Google Scholar 

  • Park EY, Ishikiriyama M, Nishina T, Kato T, Yagi H, Kato K, Ueda H (2009) Human IgG1 expression in silkworm larval hemolymph using BmNPV bacmids and its N-linked glycan structure. J Biotechnol 139:108–114. doi:10.1016/j.jbiotec.2008.09.013

    Article  Google Scholar 

  • Sasaki K et al (2009) Silkworm expression and sugar profiling of human immune cell surface receptor, KIR2DL1. Biochem Biophys Res Commun 387:575–580. doi:10.1016/j.bbrc.2009.07.065

    Article  Google Scholar 

  • Saxena K, Dutta A, Klein-Seetharaman J, Schwalbe H (2012) Isotope labeling in insect cells. Methods Mol Biol 831:37–54. doi:10.1007/978-1-61779-480-3_3

    Google Scholar 

  • Skrisovska L, Schubert M, Allain FH (2010) Recent advances in segmental isotope labeling of proteins: NMR applications to large proteins and glycoproteins. J Biomol NMR 46:51–65. doi:10.1007/s10858-009-9362-7

    Article  Google Scholar 

  • Takahashi N, Kato K (2003) GALAXY(glycoanalysis by the three axes of MS and chromatography):a web application that assists structural analyses of N-glycans. Trends Glycosci Glycotech 15:235–251

    Article  Google Scholar 

  • Takahashi H, Shimada I (2010) Production of isotopically labeled heterologous proteins in non-E. coli prokaryotic and eukaryotic cells. J Biomol NMR 46:3–10. doi:10.1007/s10858-009-9377-0

    Article  Google Scholar 

  • Vranken WF et al (2005) The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins 59:687–696

    Article  Google Scholar 

  • Yagi H, Yamamoto M, Yu SY, Takahashi N, Khoo KH, Lee YC, Kato K (2010) N-Glycosylation profiling of turtle egg yolk: expression of galabiose structure. Carbohydr Res 345:442–448. doi:10.1016/j.carres.2009.12.002

    Article  Google Scholar 

  • Yagi H, Saito T, Yanagisawa M, Yu RK, Kato K (2012) Lewis X-carrying N-glycans regulate the proliferation of mouse embryonic neural stem cells via the Notch signaling pathway. J Biol Chem 287:24356–24364. doi:10.1074/jbc.M112.365643

    Article  Google Scholar 

  • Yagi H, Zhang Y, Yagi-Utsumi M, Yamaguchi T, Iida S, Yamaguchi Y, Kato K (2014) Backbone 1H, 13C, and 15N resonance assignments of the Fc fragment of human immunoglobulin G glycoprotein. Biomol NMR Assign. doi:10.1007/s12104-014-9586-7

    Google Scholar 

  • Yagi H et al (2015) NMR-based structural validation of therapeutic antibody produced in Nicotiana benthamiana. Plant Cell Rep. doi:10.1007/s00299-015-1757-1

    Google Scholar 

  • Yamaguchi Y, Kato K (2010) Dynamics and interactions of glycoconjugates probed by stable-isotope-assisted NMR spectroscopy. Methods Enzymol 478:305–322

    Google Scholar 

  • Yamaguchi Y, Kim H, Kato K, Masuda K, Shimada I, Arata Y (1995) Proteolytic fragmentation with high specificity of mouse immunoglobulin G Mapping of proteolytic cleavage sites in the hinge region. J Immunol Methods 181:259–267

    Article  Google Scholar 

  • Yamaguchi Y et al (2006) Glycoform-dependent conformational alteration of the Fc region of human immunoglobulin G1 as revealed by NMR spectroscopy. Biochim Biophys Acta 1760:693–700. doi:10.1016/j.bbagen.2005.10.002

    Article  Google Scholar 

  • Zhu J (2012) Mammalian cell protein expression for biopharmaceutical production. Biotechnol Adv 30:1158–1170. doi:10.1016/j.biotechadv.2011.08.022

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported in part by the Program for the Promotion of Fundamental Studies in Health Sciences of the National Institute of Biomedical Innovation (NIBIO) and by Grants-in-Aid for Scientific Research (24249002, 25102008, and 25860053) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT). This study was partly also supported by the Nanotechnology Platform Program (Molecule and Material Synthesis) of MEXT. We also thank Ms. Kiyomi Senda and Ms. Kumiko Hattori (Nagoya City University) for their help in purification of IgG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koichi Kato.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 153 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yagi, H., Nakamura, M., Yokoyama, J. et al. Stable isotope labeling of glycoprotein expressed in silkworms using immunoglobulin G as a test molecule. J Biomol NMR 62, 157–167 (2015). https://doi.org/10.1007/s10858-015-9930-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-015-9930-y

Keywords

Navigation