Advertisement

Journal of Biomolecular NMR

, Volume 61, Issue 1, pp 55–64 | Cite as

Utilization of paramagnetic relaxation enhancements for high-resolution NMR structure determination of a soluble loop-rich protein with sparse NOE distance restraints

  • Kyoko Furuita
  • Saori Kataoka
  • Toshihiko Sugiki
  • Yoshikazu Hattori
  • Naohiro Kobayashi
  • Takahisa Ikegami
  • Kazuhiro Shiozaki
  • Toshimichi Fujiwara
  • Chojiro Kojima
Article

Abstract

NMR structure determination of soluble proteins depends in large part on distance restraints derived from NOE. In this study, we examined the impact of paramagnetic relaxation enhancement (PRE)-derived distance restraints on protein structure determination. A high-resolution structure of the loop-rich soluble protein Sin1 could not be determined by conventional NOE-based procedures due to an insufficient number of NOE restraints. By using the 867 PRE-derived distance restraints obtained from the NOE-based structure determination procedure, a high-resolution structure of Sin1 could be successfully determined. The convergence and accuracy of the determined structure were improved by increasing the number of PRE-derived distance restraints. This study demonstrates that PRE-derived distance restraints are useful in the determination of a high-resolution structure of a soluble protein when the number of NOE constraints is insufficient.

Keywords

Paramagnetic relaxation enhancement PRE Structure determination Soluble protein RDC Sin1 

Notes

Acknowledgments

We thank Dr. Peter Güntert for letting us use CYANA 3.95. We thank Momoko Yoneyama, and Yuki Nishigaya for sample preparation and mass spectrometry measurements, respectively. This work was supported in part by Grants from MEXT/JSPS KAKENHI, TPRP, Platform for Drug Discovery, Informatics, and Structural Life Science to K.S., T.F. and C.K., and Grants-in-Aid for JSPS Fellows to K.F. and S.K.

Supplementary material

10858_2014_9882_MOESM1_ESM.docx (7.2 mb)
Supplementary material 1 (DOCX 7419 kb)

References

  1. Battiste JL, Wagner G (2000) Utilization of site-directed spin labeling and high-resolution heteronuclear nuclear magnetic resonance for global fold determination of large proteins with limited nuclear overhauser effect data. Biochemistry 39:5355–5365CrossRefGoogle Scholar
  2. Clore G, Iwahara J (2009) Theory, practice and applications of paramagnetic relaxation enhancement for the characterization of transient low-population states of biological macromolecules and their complexes. Chem Rev 109:4108–4139CrossRefGoogle Scholar
  3. Clore G, Tang C, Iwahara J (2007) Elucidating transient macromolecular interactions using paramagnetic relaxation enhancement. Curr Opin Struct Biol 17:603–616CrossRefGoogle Scholar
  4. Cybulski N, Hall MN (2009) TOR complex 2: a signaling pathway of its own. Trends Biochem Sci 34:620–627CrossRefGoogle Scholar
  5. Delaglio F, Grzesiek S, Vuister G, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293CrossRefGoogle Scholar
  6. Facchinetti V, Ouyang W, Wei H, Soto N, Lazorchak A, Gould C, Lowry C, Newton AC, Mao Y, Miao RQ, Sessa WC, Qin J, Zhang P, Su B, Jacinto E (2008) The mammalian target of rapamycin complex 2 controls folding and stability of Akt and protein kinase C. EMBO J 27:1932–19243CrossRefGoogle Scholar
  7. Farrow N, Muhandiram R, Singer A, Pascal S, Kay C, Gish G, Shoelson S, Pawson T, Formankay J, Kay L (1994) Backbone dynamics of a free and a phosphopeptide-complexed Src Homology-2 domain studied by N-15 nmr relaxation. Biochemistry 33:5984–6003CrossRefGoogle Scholar
  8. Frias MA, Thoreen CC, Jaffe JD, Schroder W, Sculley T, Carr SA, Sabatini DM (2006) mSin1 is necessary for Akt/PKB phosphorylation, and its isoforms define three distinct mTORC2s. Curr Biol 16:1865–1870CrossRefGoogle Scholar
  9. García-Martínez JM, Alessi DR (2008) mTOR complex 2 (mTORC2) controls hydrophobic motif phosphorylation and activation of serum- and glucocorticoid-induced protein kinase 1 (SGK1). Biochem J 416:375–385CrossRefGoogle Scholar
  10. Goddard and Kneller (2008) SPARKY 3. University of California, San FranciscoGoogle Scholar
  11. Gottstein D, Reckel S, Dötsch V, Güntert P (2012) Requirements on paramagnetic relaxation enhancement data for membrane protein structure determination by NMR. Structure 20:1019–1027CrossRefGoogle Scholar
  12. Güntert P, Mumenthaler C, Wüthrich K (1997) Torsion angle dynamics for NMR structure calculation with the new program DYANA. J Mol Biol 273:283–298CrossRefGoogle Scholar
  13. Hayashi K, Kojima C (2008) pCold-GST vector: a novel cold-shock vector containing GST tag for soluble protein production. Protein Expr Purif 62:120–127CrossRefGoogle Scholar
  14. Herrmann T, Güntert P, Wüthrich K (2002) Protein NMR structure determination with automated NOE assignment using the new software CANDID and the torsion angle dynamics algorithm DYANA. J Mol Biol 319:209–227CrossRefGoogle Scholar
  15. Holm L (2010) Dali server: conservation mapping in 3D. Nucleic Acids Res 38(Web Server issue):W545–W549CrossRefGoogle Scholar
  16. Holm L, Kääriäinen S, Rosenström P, Schenkel A (2008) Searching protein structure databases with DaliLite v. 3. Bioinformatics 24(23):2780–2781CrossRefGoogle Scholar
  17. Hresko RC, Mueckler M (2005) mTOR.RICTOR is the Ser473 kinase for Akt/protein kinase B in 3T3-L1 adipocytes. J Biol Chem 280:40406–40416CrossRefGoogle Scholar
  18. Hu JS, Bax A (1997) Chi 1 angle information from a simple two-dimensional NMR experiment that identifies trans 3JNC gamma couplings in isotopically enriched proteins. J Biomol NMR 9:323–328CrossRefGoogle Scholar
  19. Huang YJ, Swapna GV, Rajan PK, Ke H, Xia B, Shukla K, Inouye M, Montelione GT (2003) Solution NMR structure of ribosome-binding factor A (RbfA), a cold-shock adaptation protein from Escherichia coli. J Mol Biol 327:521–536CrossRefGoogle Scholar
  20. Ikeda K, Morigasaki S, Tatebe H, Tamanoi F, Shiozaki K (2008) Fission yeast TOR complex 2 activates the AGC-family Gad8 kinase essential for stress resistance and cell cycle control. Cell Cycle 7:358–364CrossRefGoogle Scholar
  21. Jacinto E, Facchinetti V, Liu D, Soto N, Wei S, Jung SY, Huang Q, Qin J, Su B (2006) SIN1/MIP1 maintains rictor-mTOR complex integrity and regulates Akt phosphorylation and substrate specificity. Cell 127:125–137CrossRefGoogle Scholar
  22. Jee J, Güntert P (2003) Influence of the completeness of chemical shift assignments on NMR structures obtained with automated NOE assignment. J Struct Funct Genom 4:179–189CrossRefGoogle Scholar
  23. Johnson B, Blevins R (1994) NMRView—a computer-program for the visualization and analysis of NMR data. J Biomol NMR 4:603–614CrossRefGoogle Scholar
  24. Kataoka S, Furuita K, Hattori Y, Kobayashi N, Ikegami T, Shiozaki K, Fujiwara T , Kojima C (2014) 1H, 15N and 13C resonance assignments of the conserved region in the middle domain of S. pombe Sin1 protein. Biomol NMR Assign. doi: 10.1007/s12104-014-9550-6
  25. Kay LE, Torchia DA, Bax A (1989) Backbone dynamics of proteins as studied by 15 N inverse detected heteronuclear NMR spectroscopy: application to staphylococcal nuclease. Biochemistry 28:8972–8979CrossRefGoogle Scholar
  26. Kobayashi N, Iwahara J, Koshiba S, Tomizawa T, Tochio N, Güntert P, Kigawa T, Yokoyama S (2007) KUJIRA, a package of integrated modules for systematic and interactive analysis of NMR data directed to high-throughput NMR structure studies. J Biomol NMR 39:31–52CrossRefGoogle Scholar
  27. Liang B, Bushweller JH, Tamm LK (2006) Site-directed parallel spin-labeling and paramagnetic relaxation enhancement in structure determination of membrane proteins by solution NMR spectroscopy. J Am Chem Soc 128:4389–4397CrossRefGoogle Scholar
  28. Madl T, Felli IC, Bertini I, Sattler M (2010) Structural analysis of protein interfaces from 13C direct-detected paramagnetic relaxation enhancements. J Am Chem Soc 132:7285–7287CrossRefGoogle Scholar
  29. Madl T, Güttler T, Görlich D, Sattler M (2011) Structural analysis of large protein complexes using solvent paramagnetic relaxation enhancements. Angew Chem Int Ed Engl 50:3993–3997CrossRefGoogle Scholar
  30. Matsuo T, Kubo Y, Watanabe Y, Yamamoto M (2003) Schizosaccharomyces pombe AGC family kinase Gad8p forms a conserved signaling module with TOR and PDK1-like kinases. EMBO J 22:3073–3083CrossRefGoogle Scholar
  31. Muhandiram D, Farrow N, Xu G, Smallcombe S, Kay L (1993) A gradient C-13 NOESY-HSQC experiment for recording noesy spectra of C-13-labeled proteins dissolved in H2O. J Magn Reson Ser B 102:317–321CrossRefGoogle Scholar
  32. Murzin AG, Brenner SE, Hubbard T, Chothia C (1995) SCOP: a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol 247(4):536–540Google Scholar
  33. Nilges M (1997) Ambiguous distance data in the calculation of NMR structures. Fold Des 2:S53–S57CrossRefGoogle Scholar
  34. Ottiger M, Delaglio F, Bax A (1998) Measurement of J and dipolar couplings from simplified two-dimensional NMR spectra. J Magn Reson 131:373–378ADSCrossRefGoogle Scholar
  35. Reckel S, Gottstein D, Stehle J, Loehr F, Verhoefen M-K, Takeda M, Silvers R, Kainosho M, Glaubitz C, Wachtveitl J, Bernhard F, Schwalbe H, Guentert P, Doetsch V (2011) Solution NMR structure of proteorhodopsin. Angew Chem Int Ed 50:11942–11946CrossRefGoogle Scholar
  36. Roosild TP, Greenwald J, Vega M, Castronovo S, Riek R, Choe S (2005) NMR structure of Mistic, a membrane-integrating protein for membrane protein expression. Science 307:1317–1321ADSCrossRefGoogle Scholar
  37. Sarbassov DD, Guertin DA, Ali SM, Sabatini DM (2005) Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307:1098–1101ADSCrossRefGoogle Scholar
  38. Schwieters CD, Kuszewski JJ, Tjandra N, Clore GM (2003) The Xplor-NIH NMR molecular structure determination package. J Magn Reson 160(1):65–73ADSCrossRefGoogle Scholar
  39. Schwieters CD, Kuszewski JJ, Clore GM (2006) Using Xplor-NIH for NMR molecular structure determination. Progr NMR Spectrosc 48:47–62CrossRefGoogle Scholar
  40. Shen Y, Delaglio F, Cornilescu G, Bax A (2009) TALOS+ : a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J Biomol NMR 44:213–223CrossRefGoogle Scholar
  41. Simon B, Madl T, Mackereth CD, Nilges M, Sattler M (2010) An efficient protocol for NMR-spectroscopy-based structure determination of protein complexes in solution. Angew Chem Int Ed Engl 49:1967–1970CrossRefGoogle Scholar
  42. Van Horn WD, Kim H-J, Ellis CD, Hadziselimovic A, Sulistijo ES, Karra MD, Tian C, Soennichsen FD, Sanders CR (2009) Solution nuclear magnetic resonance structure of membrane-integral diacylglycerol kinase. Science 324:1726–1729ADSCrossRefGoogle Scholar
  43. Volkov AN, Worrall JAR, Holtzmann E, Ubbink M (2006) Solution structure and dynamics of the complex between cytochrome c and cytochrome c peroxidase determined by paramagnetic NMR. Proc Natl Acad Sci 103:18945–18950ADSCrossRefGoogle Scholar
  44. Wullschleger S, Loewith R, Hall MN (2006) TOR signaling in growth and metabolism. Cell 124:471–484CrossRefGoogle Scholar
  45. Yang Q, Inoki K, Ikenoue T, Guan KL (2006) Identification of Sin1 as an essential TORC2 component required for complex formation and kinase activity. Genes Dev 20:2820–2832CrossRefGoogle Scholar
  46. Yang Y, Ramelot TA, McCarrick RM, Ni S, Feldmann EA, Cort JR, Wang H, Ciccosanti C, Jiang M, Janjua H, Acton TB, Xiao R, Everett JK, Montelione GT, Kennedy MA (2010) Combining NMR and EPR methods for homodimer protein structure determination. J Am Chem Soc 132:11910–11913CrossRefGoogle Scholar
  47. Zhang O, Kay LE, Olivier JP, Forman-Kay JD (1994) Backbone 1H and 15N resonance assignments of the N-terminal SH3 domain of drk in folded and unfolded states using enhanced-sensitivity pulsed field gradient NMR techniques. J Biomol NMR 4:845–858CrossRefGoogle Scholar
  48. Zhou Y, Cierpicki T, Jimenez RH, Lukasik SM, Ellena JF, Cafiso DS, Kadokura H, Beckwith J, Bushweller JH (2008) NMR solution structure of the integral membrane enzyme DsbB: functional insights into DsbB-catalyzed disulfide bond formation. Mol Cell 31:896–908CrossRefGoogle Scholar
  49. Zweckstetter M, Bax A (2000) Prediction of sterically induced alignment in a dilute liquid crystalline phase: aid to protein structure determination by NMR. J Am Chem Soc 122:3791–3792CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Kyoko Furuita
    • 1
  • Saori Kataoka
    • 1
  • Toshihiko Sugiki
    • 1
  • Yoshikazu Hattori
    • 1
  • Naohiro Kobayashi
    • 1
  • Takahisa Ikegami
    • 1
  • Kazuhiro Shiozaki
    • 2
  • Toshimichi Fujiwara
    • 1
  • Chojiro Kojima
    • 1
  1. 1.Institute for Protein ResearchOsaka UniversitySuitaJapan
  2. 2.Graduate School of Biological SciencesNara Institute of Science and TechnologyNaraJapan

Personalised recommendations