Journal of Biomolecular NMR

, Volume 61, Issue 1, pp 35–45 | Cite as

Correlation of chemical shifts predicted by molecular dynamics simulations for partially disordered proteins



There has been a longstanding interest in being able to accurately predict NMR chemical shifts from structural data. Recent studies have focused on using molecular dynamics (MD) simulation data as input for improved prediction. Here we examine the accuracy of chemical shift prediction for intein systems, which have regions of intrinsic disorder. We find that using MD simulation data as input for chemical shift prediction does not consistently improve prediction accuracy over use of a static X-ray crystal structure. This appears to result from the complex conformational ensemble of the disordered protein segments. We show that using accelerated molecular dynamics (aMD) simulations improves chemical shift prediction, suggesting that methods which better sample the conformational ensemble like aMD are more appropriate tools for use in chemical shift prediction for proteins with disordered regions. Moreover, our study suggests that data accurately reflecting protein dynamics must be used as input for chemical shift prediction in order to correctly predict chemical shifts in systems with disorder.


Chemical shift prediction Molecular dynamics simulation Accelerated MD Intein Partially disordered proteins 



Supported in part by NIH R01 GM086868-16 (Tom Muir, PI), and T32 GM007288-39. This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number ACI-1053575. We are grateful to Sam Sparks for discussion.


  1. Ball KA, Wemmer DE, Head-Gordon T (2014) Comparison of structure determination methods for intrinsically disordered amyloid-β peptides. J Phys Chem B 118:6405–6416CrossRefGoogle Scholar
  2. Baskaran K, Brunner K, Munte CE, Kalbitzer HR (2010) Mapping of protein structural ensembles by chemical shifts. J Biomol NMR 48:71–83CrossRefGoogle Scholar
  3. Bondar AN, del Val C, White SH (2009) Rhomboid protease dynamics and lipid interactions. Structure 17:395–405CrossRefGoogle Scholar
  4. Camilloni C, Robustelli P, De Simone A, Cavalli A, Vendruscolo M (2012) Characterization of the conformational equilibrium between the two major substates of RNase A using NMR chemical shifts. J Am Chem Soc 134:3968–3971CrossRefGoogle Scholar
  5. Camilloni C, Cavalli A, Vendruscolo M (2013) Assessment of the use of NMR chemical shifts as replica-averaged structural restraints in molecular dynamics simulations to characterize the dynamics of proteins. J Phys Chem B 117:1838–1843CrossRefGoogle Scholar
  6. Case DA, Cheatham TE 3rd, Darden T, Gohlke H, Luo R, Merz KM Jr, Onufriev A, Simmerling C, Wang B, Woods RJ (2005) The Amber biomolecular simulation programs. J Comput Chem 26:1668–1688CrossRefGoogle Scholar
  7. Case D, Darden T, Cheatham T III, Simmerling C, Wang J, Duke R, Luo R, Walker R, Zhang W, Merz K (2012) AMBER 12. University of California, San FranciscoGoogle Scholar
  8. Cavalli A, Salvatella X, Dobson CM, Vendruscolo M (2007) Protein structure determination from NMR chemical shifts. Proc Natl Acad Sci USA 104:9615–9620CrossRefADSGoogle Scholar
  9. Chen H, Huang Z, Dutta K, Blais S, Neubert TA, Li X, Cowburn D, Traaseth NJ, Mohammadi M (2013) Cracking the molecular origin of intrinsic tyrosine kinase activity through analysis of pathogenic gain-of-function mutations. Cell Rep 4:376–384CrossRefGoogle Scholar
  10. De Simone A, Cavalli A, Hsu ST, Vranken W, Vendruscolo M (2009) Accurate random coil chemical shifts from an analysis of loop regions in native states of proteins. J Am Chem Soc 131:16332–16333CrossRefGoogle Scholar
  11. Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293CrossRefGoogle Scholar
  12. Deupi X, Kobilka BK (2010) Energy landscapes as a tool to integrate GPCR structure, dynamics, and function. Physiology 25:293–303CrossRefGoogle Scholar
  13. Dominguez C, Boelens R, Bonvin AM (2003) HADDOCK: a protein-protein docking approach based on biochemical or biophysical information. J Am Chem Soc 125:1731–1737CrossRefGoogle Scholar
  14. Eisenmesser EZ, Millet O, Labeikovsky W, Korzhnev DM, Wolf-Watz M, Bosco DA, Skalicky JJ, Kay LE, Kern D (2005) Intrinsic dynamics of an enzyme underlies catalysis. Nature 438:117–121CrossRefADSGoogle Scholar
  15. Eryilmaz E, Shah NH, Muir TW, Cowburn D (2014) Structural and dynamical features of inteins and implications on protein splicing. J Biol Chem 289:14506–14511CrossRefGoogle Scholar
  16. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103:8577–8593CrossRefADSGoogle Scholar
  17. Fiser A, Do RK, Sali A (2000) Modeling of loops in protein structures. Protein sci 9:1753–1773CrossRefGoogle Scholar
  18. Hamelberg D, Mongan J, McCammon JA (2004) Accelerated molecular dynamics: a promising and efficient simulation method for biomolecules. J Chem Phys 120:11919–11929CrossRefADSGoogle Scholar
  19. Han B, Liu Y, Ginzinger SW, Wishart DS (2011) SHIFTX2: significantly improved protein chemical shift prediction. J Biomol NMR 50:43–57CrossRefGoogle Scholar
  20. Iwai H, Züger S, Jin J, Tam P-H (2006) Highly efficient protein trans splicing by a naturally split DnaE intein from Nostoc punctiforms. FEBS Lett 580:1853–1858CrossRefGoogle Scholar
  21. Jensen MR, Markwick PR, Meier S, Griesinger C, Zweckstetter M, Grzesiek S, Bernado P, Blackledge M (2009) Quantitative determination of the conformational properties of partially folded and intrinsically disordered proteins using NMR dipolar couplings. Structure 17:1169–1185CrossRefGoogle Scholar
  22. Johnson B (2004) Using NMRView to Visualize and Analyze the NMR Spectra of Macromolecules. In: Downing AK (ed) In Protein NMR Techniques. Humana Press, pp 313–352Google Scholar
  23. Kim TH, Chung KY, Manglik A, Hansen AL, Dror RO, Mildorf TJ, Shaw DE, Kobilka BK, Prosser RS (2013) The role of ligands on the equilibria between functional states of a G protein-coupled receptor. J Am Chem Soc 135:9465–9474CrossRefGoogle Scholar
  24. Kipp DR, Hirschi JS, Wakata A, Goldstein H, Schramm VL (2012) Transition states of native and drug-resistant HIV-1 protease are the same. Proc Natl Acad Sci USA 109:6543–6548CrossRefADSGoogle Scholar
  25. Kohlhoff KJ, Robustelli P, Cavalli A, Salvatella X, Vendruscolo M (2009) Fast and accurate predictions of protein NMR chemical shifts from interatomic distances. J Am Chem Soc 131:13894–13895CrossRefGoogle Scholar
  26. Lehtivarjo J, Hassinen T, Korhonen SP, Perakyla M, Laatikainen R (2009) 4D prediction of protein 1H chemical shifts. J Biomol NMR 45:413–426CrossRefGoogle Scholar
  27. Lehtivarjo J, Tuppurainen K, Hassinen T, Laatikainen R, Perakyla M (2012) Combining NMR ensembles and molecular dynamics simulations provides more realistic models of protein structures in solution and leads to better chemical shift prediction. J Biomol NMR 52:257–267CrossRefGoogle Scholar
  28. Markwick PR, Cervantes CF, Abel BL, Komives EA, Blackledge M, McCammon JA (2010) Enhanced conformational space sampling improves the prediction of chemical shifts in proteins. J Am Chem Soc 132:1220–1221CrossRefGoogle Scholar
  29. Medek A, Hajduk PJ, Mack J, Fesik SW (2000) The use of differential chemical shifts for determining the binding site location and orientation of protein-bound ligands. J Am Chem Soc 122:1241–1242CrossRefGoogle Scholar
  30. Menon V, Vallat BK, Dybas JM, Fiser A (2013) Modeling proteins using a super-secondary structure library and NMR chemical shift information. Structure 21:891–899CrossRefGoogle Scholar
  31. Mittermaier A, Kay LE (2006) New tools provide new insights in NMR studies of protein dynamics. Science 312:224–228CrossRefADSGoogle Scholar
  32. Montalvao RW, Cavalli A, Salvatella X, Blundell TL, Vendruscolo M (2008) Structure determination of protein-protein complexes using NMR chemical shifts: case of an endonuclease colicin-immunity protein complex. J Am Chem Soc 130:15990–15996CrossRefGoogle Scholar
  33. Neal S, Nip AM, Zhang H, Wishart DS (2003) Rapid and accurate calculation of protein 1H, 13C and 15N chemical shifts. J Biomol NMR 26:215–240CrossRefGoogle Scholar
  34. Oeemig JS, Aranko AS, Djupsjobacka J, Heinamaki K, Iwai H (2009) Solution structure of DnaE intein from Nostoc punctiforme: structural basis for the design of a new split intein suitable for site-specific chemical modification. FEBS Lett 583:1451–1456CrossRefGoogle Scholar
  35. Oeemig JS, Zhou D, Kajander T, Wlodawer A, Iwai H (2012) NMR and crystal structures of the Pyrococcus horikoshii RadA intein guide a strategy for engineering a highly efficient and promiscuous intein. J Mol Biol 421:85–99CrossRefGoogle Scholar
  36. Paulus H (2000) Protein splicing and related forms of protein autoprocessing. Annu Rev Biochem 69:447–496CrossRefGoogle Scholar
  37. Perler FB (2002) InBase: the intein database. Nucleic Acids Res 30:383–384CrossRefGoogle Scholar
  38. Ramirez M, Valdes N, Guan D, Chen Z (2013) Engineering split intein DnaE from Nostoc punctiforme for rapid protein purification. Protein Eng Des Sel 26:215–223CrossRefGoogle Scholar
  39. Robustelli P, Stafford KA, Palmer AG 3rd (2012) Interpreting protein structural dynamics from NMR chemical shifts. J Am Chem Soc 134:6365–6374CrossRefGoogle Scholar
  40. Robustelli P, Trbovic N, Friesner RA, Palmer AG (2013) Conformational dynamics of the partially disordered yeast transcription factor GCN4. J Chem Theory Comput 9(11):5190–5200CrossRefGoogle Scholar
  41. Ryckaert J-P, Ciccotti G, Berendsen HJ (1977) Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23:327–341CrossRefADSGoogle Scholar
  42. Shah NH, Eryilmaz E, Cowburn D, Muir TW (2013a) Extein residues play an intimate role in the rate-limiting step of protein trans-splicing. J Am Chem Soc 135:5839–5847CrossRefGoogle Scholar
  43. Shah NH, Eryilmaz E, Cowburn D, Muir TW (2013b) Naturally split inteins assemble through a “capture and collapse” mechanism. J Am Chem Soc 135:18673–18681CrossRefGoogle Scholar
  44. Shan Y, Eastwood MP, Zhang X, Kim ET, Arkhipov A, Dror RO, Jumper J, Kuriyan J, Shaw DE (2012) Oncogenic mutations counteract intrinsic disorder in the EGFR kinase and promote receptor dimerization. Cell 149:860–870CrossRefGoogle Scholar
  45. Shen Y, Bax A (2007) Protein backbone chemical shifts predicted from searching a database for torsion angle and sequence homology. J Biomol NMR 38:289–302CrossRefGoogle Scholar
  46. Shen Y, Bax A (2010) SPARTA+: a modest improvement in empirical NMR chemical shift prediction by means of an artificial neural network. J Biomol NMR 48:13–22CrossRefGoogle Scholar
  47. Shen T, Hamelberg D (2008) A statistical analysis of the precision of reweighting-based simulations. J Chem Phys 129:034103CrossRefADSGoogle Scholar
  48. Shen Y, Lange O, Delaglio F, Rossi P, Aramini JM, Liu G, Eletsky A, Wu Y, Singarapu KK, Lemak A et al (2008) Consistent blind protein structure generation from NMR chemical shift data. Proc Natl Acad Sci USA 105:4685–4690CrossRefADSGoogle Scholar
  49. Spera S, Bax A (1991) Empirical correlation between protein backbone conformation and C. alpha and C. beta. 13C nuclear magnetic resonance chemical shifts. J Am Chem Soc 113:5490–5492CrossRefGoogle Scholar
  50. Stafford KA, Robustelli P, Palmer AG 3rd (2013) Thermal adaptation of conformational dynamics in ribonuclease H. PLoS Comput Biol 9:e1003218CrossRefADSGoogle Scholar
  51. Tamiola K, Acar B, Mulder FA (2010) Sequence-specific random coil chemical shifts of intrinsically disordered proteins. J Am Chem Soc 132:18000–18003CrossRefGoogle Scholar
  52. Tang SS, Case DA (2011) Calculation of chemical shift anisotropy in proteins. J Biomol NMR 51:303–312CrossRefGoogle Scholar
  53. Wereszczynski J, McCammon JA (2012) Statistical mechanics and molecular dynamics in evaluating thermodynamic properties of biomolecular recognition. Q Rev Biophys 45:1–25CrossRefGoogle Scholar
  54. Wishart DS (2011) Interpreting protein chemical shift data. Prog Nucl Magn Reson Spectrosc 58:62–87CrossRefGoogle Scholar
  55. Xu XP, Case DA (2001) Automated prediction of 15N, 13Cα, 13Cβ and 13C′ chemical shifts in proteins using a density functional database. J Biomol NMR 21:321–333CrossRefGoogle Scholar
  56. Xu XP, Case DA (2002) Probing multiple effects on 15N, 13Cα, 13Cβ, and 13C′ chemical shifts in peptides using density functional theory. Biopolymers 65:408–423CrossRefGoogle Scholar
  57. Zettler J, Schütz V, Mootz HD (2009) The naturally split Npu DnaE intein exhibits an extraordinarily high rate in the protein trans-splicing reaction. FEBS Lett 583:909–914CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Jerome M. Karp
    • 1
  • Ertan Erylimaz
    • 1
  • David Cowburn
    • 1
  1. 1.Department of BiochemistryAlbert Einstein College of Medicine of Yeshiva UniversityBronxUSA

Personalised recommendations