Journal of Biomolecular NMR

, Volume 57, Issue 4, pp 319–326 | Cite as

SedNMR: a web tool for optimizing sedimentation of macromolecular solutes for SSNMR

  • Lucio Ferella
  • Claudio Luchinat
  • Enrico Ravera
  • Antonio Rosato


We have proposed solid state NMR (SSNMR) of sedimented solutes as a novel approach to sample preparation for biomolecular SSNMR without crystallization or other sample manipulations. The biomolecules are confined by high gravity—obtained by centrifugal forces either directly in a SSNMR rotor or in a ultracentrifugal device—into a hydrated non-crystalline solid suitable for SSNMR investigations. When gravity is removed, the sample reverts to solution and can be treated as any solution NMR sample. We here describe a simple web tool to calculate the relevant parameters for the success of the experiment.


Ultracentrifuge Sedimentation Solid state NMR Biological macromolecules Aggregates 



This work has been supported by the EC contracts East-NMR No. 228461, WeNMR No. 261572 and Bio-NMR No. 261863, INSTRUCT (European FP7 e-Infrastructure Grant, Contract No. 211252,, the project PRIN (2009FAKHZT_001) “Biologia strutturale meccanicistica: avanzamenti metodologici e biologici” and Ente Cassa Risparmio Firenze. We thank Frank Engelke (Bruker Biospin), Paolo Santino (Agilent Tech.), Yusuke Nishiyama (Jeol) and F. David Doty (Doty Scientific) for providing rotor specifications.


  1. Ader C, Schneider R, Seider K, Etzkorn M, Becker S, Baldus M (2009) Structural rearrangements of membrane proteins probed by water-edited solid-state NMR spectroscopy. J Am Chem Soc 131:170–176Google Scholar
  2. Akbey Ü, van Rossum B-J, Oschkinat H (2012) Practical aspects of high-sensitivity multidimensional 13C MAS NMR spectroscopy of perdeuterated proteins. J Magn Reson 217:77–85ADSGoogle Scholar
  3. Andersson KM, Hovmoller S (2000) The protein content in crystals and packing coefficients in different space groups. Acta Crystallogr D Biol Crystallogr 56:789–790Google Scholar
  4. Asami S, Szekely K, Schanda P, Meier BH, Reif B (2012) Optimal degree of protonation for (1)H detection of aliphatic sites in randomly deuterated proteins as a function of the MAS frequency. J Biomol NMR 54:155–168Google Scholar
  5. Balbo J, Mereghetti P, Herten D-P, Wade RC (2013) The shape of protein crowders is a major determinant of protein diffusion. Biophys J 104:1576–1584Google Scholar
  6. Baldwin AJ, Walsh P, Hansen DF, Hilton GR, Benesch JLP, Sharpe S, Kay LE (2012) Probing dynamic conformations of the high-molecular-weight αB-crystallin heat shock protein ensemble by NMR spectroscopy. J Am Chem Soc 134:15343–15350Google Scholar
  7. Barbato G, Ikura M, Kay LE, Pastor RW, Bax A (1992) Backbone dynamics of calmodulin studied by 15N relaxation using inverse detected two-dimensional NMR spectroscopy; the central helix is flexible. Biochemistry 31:5269–5278Google Scholar
  8. Bayro MJ, Debelouchina GT, Eddy MT, Birkett NR, MacPhee CE, Rosay MM, Maas W, Dobson CM, Griffin RG (2011) Intermolecular structure determination of amyloid fibrils with magic-angle spinning and dynamic nuclear polarization NMR. J Am Chem Soc 133:13967–13974Google Scholar
  9. Bermel W, Bertini I, Felli IC, Matzapetakis M, Pierattelli R, Theil EC, Turano P (2007) A method for Cα direct-detection in protonless NMR. J Magn Reson 188:301–310ADSGoogle Scholar
  10. Bermel W, Felli IC, Kümmerle R, Pierattelli R (2008) 13C direct-detection biomolecular NMR. Concepts Magn Reson 32A:183–200Google Scholar
  11. Bermel W, Bertini I, Felli IC, Peruzzini R, Pierattelli R (2010) Exclusively heteronuclear NMR experiments to obtain structural and dynamic information on proteins. ChemPhysChem 11:689–695Google Scholar
  12. Bertini I, Calderone V, Fragai M, Jaiswal R, Luchinat C, Melikian M, Mylonas E, Svergun D (2008) Evidence of reciprocal reorientation of the catalytic and hemopexin-like domains of full-length MMP-12. J Am Chem Soc 130:7011–7021Google Scholar
  13. Bertini I, Kursula P, Luchinat C, Parigi G, Vahokoski J, Willmans M, Yuan J (2009) Accurate solution structures of proteins from X-ray data and minimal set of NMR data: calmodulin peptide complexes as examples. J Am Chem Soc 131:5134–5144Google Scholar
  14. Bertini I, Bhaumik A, De Paepe G, Griffin RG, Lelli M, Lewandowski JR, Luchinat C (2010a) High-resolution solid-state NMR structure of a 17.6 kDa protein. J Am Chem Soc 132:1032–1040Google Scholar
  15. Bertini I, Emsley L, Lelli M, Luchinat C, Mao J, Pintacuda G (2010b) Ultra-fast MAS solid-state NMR permits extensive 13C and 1H detection in paramagnetic metalloproteins. J Am Chem Soc 132:5558–5559Google Scholar
  16. Bertini I, Case DA, Ferella L, Giachetti A, Rosato A (2011a) A grid-enable web portal for NMR structure refinement with AMBER. Bioinformatics 27:2384–2390Google Scholar
  17. Bertini I, Emsley L, Felli IC, Laage S, Lesage A, Lewandoski DA, Marchetti A, Pierattelli R, Pintacuda G (2011b) High-resolution and sensitivity through-bond correlations in ultra-fast MAS solid-state NMR. Chem Sci 2:345–348Google Scholar
  18. Bertini I, Gonnelli L, Luchinat C, Mao J, Nesi A (2011c) A new structural model Aß40 fibrils. J Am Chem Soc 133:16013–16022Google Scholar
  19. Bertini I, Luchinat C, Parigi G, Ravera E, Reif B, Turano P (2011d) Solid-state NMR of proteins sedimented by ultracentrifugation. Proc Natl Acad Sci USA 108:10396–10399ADSGoogle Scholar
  20. Bertini I, Engelke F, Gonnelli L, Knott B, Luchinat C, Osen D, Ravera E (2012a) On the use of ultracentrifugal devices for sedimented solute NMR. J Biomol NMR 54:123–127Google Scholar
  21. Bertini I, Engelke F, Luchinat C, Parigi G, Ravera E, Rosa C, Turano P (2012b) NMR properties of sedimented solutes. Phys Chem Chem Phys 14:439–447Google Scholar
  22. Bertini I, Luchinat C, Parigi G, Ravera E (2013) SedNMR: on the edge between solution and solid state NMR. Acc Chem Res 46:2059–2069Google Scholar
  23. Bhaumik A, Luchinat C, Parigi G, Ravera E, Rinaldelli M (2013) NMR crystallography on paramagnetic systems: solved and open issues. Cryst Eng Comm 15:8639–8656Google Scholar
  24. Bjerring M, Paaske B, Oschkinat H, Akbey Ü, Nielsen NC (2012) Rapid solid-state NMR of deuterated proteins by interleaved cross-polarization from 1H and 2H nuclei. J Magn Reson 214:324–328ADSGoogle Scholar
  25. Böckmann A, Gardiennet C, Verel R, Hunkeler A, Loquet A, Pintacuda G, Emsley L, Meier BH, Lesage A (2009) Characterization of different water pools in solid-state NMR protein samples. J Biomol NMR 45:319–327Google Scholar
  26. Byeon I-JL, Hou G, Han Y, Suiter CL, Ahn J, Jung J, Byeon C-H, Gronenborn AM, Polenova T (2012) Motions on the millisecond time scale and multiple conformations of HIV-1 capsid protein: implications for structural polymorphism of CA assemblies. JACS 134:6455–6466Google Scholar
  27. Cady SD, Schmidt-Rohr K, Wang J, Soto CS, DeGrado WF, Hong M (2010) Structure of the amantadine binding site of influenza M2 proton channels in lipid bilayers. Nature 463:689–692ADSGoogle Scholar
  28. Chou JJ, Li S, Klee CB, Bax A (2001) Solution structure of Ca2 + calmodulin reveals flexible hand-like properties of its domains. Nat Struct Biol 8:990–997Google Scholar
  29. Debelouchina GT, Platt GW, Bayro MJ, Radford SE, Griffin RG (2010) Magic angle spinning NMR analysis of beta(2)-microglobulin amyloid fibrils in two distinct morphologies. J Am Chem Soc 132:10414–10423Google Scholar
  30. Ding Y, Yao Y, Marassi FM (2013) Membrane protein structure determination in membrana. Acc Chem Res 46:2182–2190Google Scholar
  31. Fernández C, Wider G (2003) TROSY in NMR studies of the structure and function of large biological macromolecules. Curr Opin Struct Biol 13:570–580Google Scholar
  32. Fiaux J, Bertelsen EB, Horwich AL, Wüthrich K (2002) NMR analysis of a 900 KDa GroEL GROES complex. Nature 418:207–211ADSGoogle Scholar
  33. Fischer MW, Losonczi JA, Weaver JL, Prestegard JH (1999) Domain orientation and dynamics in multidomain proteins from residual dipolar couplings. Biochemistry 38:9013–9022Google Scholar
  34. Fragai M, Luchinat C, Martelli T, Ravera E, Sagi I, Solomonov I, Udi Y (2013a) SSNMR of biosilica-entrapped enzymes. Chem Commun. doi: 10.1039/c3cc46896h
  35. Fragai M, Luchinat C, Parigi G, Ravera E (2013b) Practical considerations over spectral quality in solid state NMR spectroscopy of soluble proteins. J Biomol NMR 57:155–166Google Scholar
  36. Gardiennet C, Schütz AK, Hunkeler A, Kunert B, Terradot L, Böckmann A, Meier BH (2012) A sedimented sample of a 59 kDa dodecameric helicase yields high-resolution solid-state NMR spectra. Angew Chem Int Edition 51:7855–7858Google Scholar
  37. Garrett RH, Grisham CM (2012) Biochemistry, 5th edn. Brooks/Cole, BelmontGoogle Scholar
  38. Gelis I, Vitzthum V, Dhimole N, Caporini MA, Schedlbauer A, Carnevale D, Connell SR, Fucini P, Bodenhausen G (2013) Solid-state NMR enhanced by dynamic nuclear polarization as a novel tool for ribosome structural biology. J Biomol NMR 56:85–93Google Scholar
  39. Giffard M, Hediger S, Lewandowski JR, Bardet M, Simorre JP, Griffin RG, De Paëpe G (2012) Compensated second-order recoupling: application to third spin assisted recoupling. Phys Chem Chem Phys 14:7246–7255Google Scholar
  40. Goobes G, Goobes R, Schueler-Furman O, Baker D, Stayton PS, Drobny GP (2006) Folding of the C-terminal bacterial binding domain in statherin upon adsorption onto hydroxyapatite crystals. Proc Natl Acad Sci USA 103:16083–16088ADSGoogle Scholar
  41. Goobes G, Goobes R, Shaw WJ, Gibson JM, Long JR, Raghunathan V, Schueler-Furman O, Popham JM, Baker D, Campbell CT, Stayton PS, Drobny GP (2007a) The structure, dynamics, and energetics of protein adsorption: lessons learned from adsorption of statherin to hydroxyapatite. Magn Reson Chem 45:S32–S47Google Scholar
  42. Goobes G, Stayton PS, Drobny GP (2007b) Solid-state NMR studies of molecular recognition at protein-mineral interfaces. Progr NMR Spectrosc 50:71–85Google Scholar
  43. Guo C, Zhang D, Tugarinov V (2008) An NMR experiment for simultaneous TROSY-based detection of amide and methyl groups in large proteins. J Am Chem Soc 130:10872–10873Google Scholar
  44. Habenstein B, Wasmer C, Bousset L, Sourigues Y, Schutz A, Loquet A, Meier BH, Melki R, Bockmann A (2011) Extensive de novo solid-state NMR assignments of the 33 kDa C-terminal domain of the Ure2 prion. J Biomol NMR 51:235–243Google Scholar
  45. Habenstein B, Bousset L, Sourigues Y, Kabani M, Loquet A, Meier BH, Melki R, Böckmann A (2012) A native-like conformation for the C-terminal domain of the prion Ure2p within its fibrillar form. Angew Chem Int Ed Engl 51:7963–7966Google Scholar
  46. Haeberlen U, Waugh JS (1969) Spin-lattice relaxation in periodically perturbed systems. Phys Rev 185:420–429ADSGoogle Scholar
  47. Haller JD, Schanda P (2013) Amplitudes and time scales of picosecond-to-microsecond motion in proteins studied by solid-state NMR: a critical evaluation of experimental approaches and application to crystalline ubiquitin. J Biomol NMR. doi: 10.1007/s10858-013-9787-x
  48. Harbison GS, Smith SO, Pardoen JA, Courtin JML, Lugtenburg J, Herzfeld J, Mathies RA, Griffin RG (1985) Solid-state carbon-13 NMR detection of a perturbed 6-s-trans chromophore in bacteriorhodopsin. Biochemistry 24:6955–6962Google Scholar
  49. Hefke F, Bagaria A, Reckel S, Ullrich SJ, Dötsch V, Glaubitz C, Güntert P (2011) Optimization of amino acid type-specific 13C and 15N labeling for the backbone assignment of membrane proteins by solution- and solid-state NMR with the UPLABEL algorithm. J Biomol NMR 49:75–84Google Scholar
  50. Hong M (2006) Solid-state NMR studies of the structure, dynamics, and assembly of β-sheet membrane peptides and α-helical membrane proteins with antibiotic activities. Acc Chem Res 39:176–183Google Scholar
  51. Hong M, Schmidt-Rohr K (2013) Magic-angle-spinning NMR techniques for measuring long-range distances in biological macromolecules. Acc Chem Res 46:2154–2163Google Scholar
  52. Hong M, Zhang Y, Hu F (2011) Membrane protein structure and dynamics from NMR spectroscopy. Annu Rev Phys Chem 63:1–24Google Scholar
  53. Hu B, Lafon OTJ, Chen Q, Amoureux J-P (2011) Broad-band homo-nuclear correlations assisted by 1H irradiation for biomolecules in very high magnetic field at fast and ultra-fast MAS frequencies. J Magn Reson 212:320–329ADSGoogle Scholar
  54. Huber M, Böckmann A, Hiller S, Meier BH (2012) 4D solid-state NMR for protein structure determination. Phys Chem Chem Phys 14:5239–5246Google Scholar
  55. Kennedy SD, Bryant RG (1990) Structural effects of hydration: studies of Lysozyme by 13C solids NMR. Biopolymers 29:1801–1806Google Scholar
  56. Kervern G, Steuernagel S, Engelke F, Pintacuda G, Emsley L (2007) Absence of Curie relaxation in paramagnetic solids yields long 1H coherence lifetimes. J Am Chem Soc 129:14118–14119Google Scholar
  57. Ketchem RR, Hu W, Cross TA (1993) High-resolution conformation of gramicidin-A in a lipid bilayer by solid-state NMR. Science 261:1457–1460ADSGoogle Scholar
  58. Knight MJ, Webber AL, Pell AJ, Guerry P, Barbet-Massin E, Bertini I, Felli IC, Gonnelli L, Pierattelli R, Emsley L, Lesage A, Hermann T, Pintacuda G (2011) Fast resonance assignment and fold determination of human superoxide dismutase by high-resolution proton-detected solid state MAS NMR spectroscopy. Angew Chem Int Edition 50:11697–11701Google Scholar
  59. Knight MJ, Pell AJ, Bertini I, Felli IC, Gonnelli L, Pierattelli R, Hermann T, Emsley L, Pintacuda G (2012) Structure and backbone dynamics of a microcrystalline metalloprotein by solid-state NMR. Proc Natl Acad Sci USA 109:11095–11100ADSGoogle Scholar
  60. Knight MJ, Felli IC, Pierattelli R, Emsley L, Pintacuda G (2013) Magic angle spinning NMR of paramagnetic proteins. Acc Chem Res 46:2108–2116Google Scholar
  61. Koenig SH, Brown RD III (1990) Field-cycling relaxometry of protein solutions and tissue: implications for MRI. Progr NMR Spectrosc 22:487–567Google Scholar
  62. Laage S, Marchetti A, Sein J, Pierattelli R, Sass HJ, Grzesiek S, Lesage A, Pintacuda G, Emsley L (2008) Band-selective 1H–13C cross-polarization in fast MAS solid-state NMR spectroscopy. J Am Chem Soc 130:17216–17217Google Scholar
  63. Lamley JM, Lewandowski JR (2012) Simultaneous acquisition of homonuclear and heteronuclear long-distance contacts with time-shared third spin assisted recoupling. J Magn Reson 218:30–34ADSGoogle Scholar
  64. Lange V, Becker-Baldus J, Kunert B, van Rossum BJ, Casagrande F, Engel A, Roske Y, Scheffel FM, Schneider E, Oschkinat H (2010) A MAS NMR study of the bacterial ABC transporter ArtMP. ChemBioChem 11:547–555Google Scholar
  65. Lewandowski JR (2013) Advances in solid-state relaxation methodology for probing site-specific protein dynamics. Acc Chem Res 46:2018–2027Google Scholar
  66. Lewandowski JR, Sein J, Sass HJ, Grzesiek S, Blackledge M, Emsley L (2010) Measurement of site-specific 13C spin-lattice relaxation in a crystalline protein. J Am Chem Soc 132:8252–8254Google Scholar
  67. Lewandowski JR, Dumez JN, Akbey Ü, Franks WT, Emsley L, Oschkinat H (2011a) Enhanced resolution and coherence lifetimes in the solid-state NMR spectroscopy of perdeuterated proteins under ultrafast magic-angle spinning. J Phys Chem Lett 2:2205–2211Google Scholar
  68. Lewandowski JR, Sass HJ, Grzesiek S, Blackledge M, Emsley L (2011b) Site-specific measurement of slow motions in proteins. J Am Chem Soc 133:16762–16765Google Scholar
  69. Linden AH, Franks WT, Akbey Ü, Lange S, van Rossum B-J, Oschkinat H (2011) Cryogenic temperature effects and resolution upon slow cooling of protein preparations in solid state NMR. J Biomol NMR 51:283–292Google Scholar
  70. Loening NM, Bjerring M, Nielsen NC, Oschkinat H (2012) A comparison of NCO and NCA transfer methods for biological solid-state NMR spectroscopy. J Magn Reson 214:81–90ADSGoogle Scholar
  71. Long JR, Shaw WJ, Stayton PS, Drobny GP (2001) Structure and dynamics of hydrated statherin on hydroxyapatite as determined by solid-state NMR. Biochemistry 40:15451–15455Google Scholar
  72. Lopez del Amo JM, Schmidt M, Fink U, Dasari M, Fändrich M, Reif B (2012) An asymmetric dimer as the basic subunit in Alzheimer’s disease amyloid β fibrils. Angew Chem Int Edition Engl 51:6136–6139Google Scholar
  73. Loquet A, Giller K, Becker S, Lange A (2010) Supramolecular interactions probed by (13)C-(13)C solid-state NMR spectroscopy. J Am Chem Soc 132:15164–15166Google Scholar
  74. Loquet A, Sgourakis NG, Gupta R, Giller K, Riedel D, Goosmann C, Griesinger C, Kolbe M, Baker D, Becker S, Lange A (2012) Atomic model of the type III secretion system needle. Nature 486:276–279ADSGoogle Scholar
  75. Loquet A, Habenstein B, Lange A (2013) Structural investigations of molecular machines by solid-state NMR. Acc Chem Res 46:2070–2079Google Scholar
  76. Luchinat C, Parigi G, Ravera E, Rinaldelli M (2012) Solid state NMR crystallography through paramagnetic restraints. J Am Chem Soc 134:5006–5009Google Scholar
  77. Luchinat C, Parigi G, Ravera E (2013) Water and protein dynamics in sedimented systems: a relaxometric investigation. Chem Phys Chem 14:3156–3161Google Scholar
  78. Lundh S (1980) Concentrated protein solutions in the analytical ultracentrifuge. J Polym Sci Polym Phys Edition 18:1963–1978ADSGoogle Scholar
  79. Lundh S (1985) Ultacentrifugation of concentrated biopolymer solutions and effect of ascorbate. Arch Biochem Biophys 241:265–274Google Scholar
  80. Lv G, Kumar A, Giller K, Orcellet ML, Riedel D, Fernandez CO, Becker S, Lange A (2012) Structural comparison of mouse and human α-synuclein amyloid fibrils by solid-state NMR. J Mol Biol 420:99–111Google Scholar
  81. Mainz A, Jehle S, van Rossum BJ, Oschkinat H, Reif B (2009) Large protein complexes with extreme rotational correlation times investigated in solution by magic-angle-spinning NMR spectroscopy. J Am Chem Soc 131:15968–15969Google Scholar
  82. Mainz A, Bardiaux B, Kuppler F, Multhaup G, Felli IC, Pierattelli R, Reif B (2012) Structural and mechanistic implications of metal-binding in the small heat-shock protein αB-crystallin. J Biol Chem 287:1128–1138Google Scholar
  83. Mainz A, Religa TL, Sprangers R, Linser R, Kay LE, Reif B (2013) NMR spectroscopy of soluble protein complexes at one mega-dalton and beyond. Angew Chem Int Edition 52:8746–8751Google Scholar
  84. Marassi FM, Opella SJ (2000) A solid-state NMR index of helical membrane protein structure and topology. J Magn Reson 144:150–155ADSGoogle Scholar
  85. Marassi FM, Ramamoorthy A, Opella SJ (1997) Complete resolution of the solid-state NMR spectrum of a uniformly 15 N-labeled membrane protein in phospholipid bilayers. Proc Natl Acad Sci USA 94:8551–8556ADSGoogle Scholar
  86. Marassi FM, Das BB, Lu GJ, Nothnagel HJ, Park SH, Son WS, Tian Y, Opella SJ (2011) Structure determination of membrane proteins in five easy pieces. Methods 55:363–369Google Scholar
  87. Martin RW, Zilm KW (2003) Preparation of protein nanocrystals and their characterization by solid state NMR. J Magn Reson 165:162–174ADSGoogle Scholar
  88. Matti Mariq M, Waugh JS (1979) NMR in rotating solids. J Chem Phys 70:3300–3316ADSGoogle Scholar
  89. Matzapetakis M, Turano P, Theil EC, Bertini I (2007) 13C-13C NOESY spectra of a 480 kDa protein: solution NMR of ferritin. J Biomol NMR 38:237–242Google Scholar
  90. Murray DT, Das N, Cross TA (2013) Solid state NMR strategy for characterizing native membrane protein structures. Acc Chem Res 46:2172–2181Google Scholar
  91. Nielsen AB, Székely K, Gath J, Ernst M, Nielsen NC, Meier BH (2012) Simultaneous acquisition of PAR and PAIN spectra. J Biomol NMR 52:283–288Google Scholar
  92. Oliphant TE (2007) Python for scientific computing. Comput Sci Eng 9:10–20Google Scholar
  93. Opella SJ (2013) Structure determination of membrane proteins in their native phospholipid bilayer environment by rotationally aligned solid-state NMR spectroscopy. Acc Chem Res 46:2145–2153Google Scholar
  94. Opella SJ, Marassi FM (2004) Structure determination of membrane proteins by NMR spectroscopy. NMR Spectrosc Chem Rev 104:3587–3606Google Scholar
  95. Parthasarathy S, Long F, Miller Y, Xiao Y, McElheny D, Thurber K, Ma B, Nussinov R, Ishii Y (2011) Molecular-level examination of Cu2+ binding structure for amyloid fibrils of 40-residue Alzheimer’s ß by solid-state NMR spectroscopy. J Am Chem Soc 133:3390–3400Google Scholar
  96. Pauli J, van Rossum B, Forster H, de Groot HJ, Oschkinat H (2000) Sample optimization and identification of signal patterns of amino acid side chains in 2D RFDR spectra of the alpha-spectrin SH3 domain. J Magn Reson 143:411–416ADSGoogle Scholar
  97. Petkova AT, Ishii Y, Balbach JJ, Antzutkin ON, Leapman RD, Delaglio F, Tycko R (2002) A structural model for Alzheimer’s beta-amyloid fibrils based on experimental constraints from solid state NMR. Proc Natl Acad Sci USA 99:16742–16747ADSGoogle Scholar
  98. Petkova AT, Baldus M, Belenky M, Hong M, Griffin RG, Herzfeld J (2003) Backbone and side chain assignment strategies for multiply labeled membrane peptides and proteins in the solid state. J Magn Reson 160:1–12ADSGoogle Scholar
  99. Polenova T (2011) Protein NMR spectroscopy: spinning into focus. Nat Chem 3:759–760Google Scholar
  100. Poon DKY, Withers SG, McIntosh LP (2007) Direct demonstration of the flexibility of the glycosylated proline-threonine linker in the Cellulomonas fimi xylanase Cex through NMR spectroscopic analysis. J Biol Chem 282:2091–2100Google Scholar
  101. Qiang W, Yau W-M, Luo Y, Mattson MP, Tycko R (2012) Antiparallel β-sheet architecture in Iowa-mutant β-amyloid fibrils. Proc Natl Acad Sci USA 109:4443–4448ADSGoogle Scholar
  102. Quillin ML, Matthews BW (2000) Accurate calculation of the density of proteins. Acta Cryst D 56:791–794Google Scholar
  103. Ravera E, Corzilius B, Michaelis VK, Rosa C, Griffin RG, Luchinat C, Bertini I (2013a) Dynamic nuclear polarization of sedimented solutes. J Am Chem Soc 135:1641–1644Google Scholar
  104. Ravera E, Parigi G, Mainz A, Religa TL, Reif B, Luchinat C (2013b) Experimental determination of microsecond reorientation correlation times in protein solutions. J Phys Chem B 117:3548–3553Google Scholar
  105. Riek R, Wider G, Pervushin K, Wüthrich K (1999) Polarization transfer by cross-correlated relaxation in solution NMR with very large molecules. Proc Natl Acad Sci USA 96:4918–4923ADSGoogle Scholar
  106. Rivas G, Minton AP (2011) Beyond the second virial coefficient: sedimentation equilibrium in highly non-ideal solutions. Methods 54:167–174Google Scholar
  107. Roerich A, Drobny GP (2013) Solid-state NMR studies of biomineralization peptides and proteins. Acc Chem Res 46:2136–2144Google Scholar
  108. Rothen A (1944) Ferritin and apoferritin in the ultracentrifuge: studies on the relationship of ferritin and apoferritin; precision measurements of the rates of sedimentation of apoferritin. J Biol Chem 152:679–693Google Scholar
  109. Schanda P, Meier BH, Ernst M (2010) Quantitative analysis of protein backbone dynamics in microcrystalline ubiquitin by solid-state NMR spectroscopy. J Am Chem Soc 132:15957–15967Google Scholar
  110. Sharma M, Yi MG, Dong H, Qin HJ, Peterson E, Busath DD, Zhou HX, Cross TA (2010) Insight into the mechanism of the influenza A proton channel from a structure in a lipid bilayer. Science 330:509–512ADSGoogle Scholar
  111. Skrynnikov NR, Goto NK, Yang D, Choy W-Y, Tolman JR, Mueller GA, Kay LE (2000) Orienting domains in proteins using dipolar couplings measured by liquid-state NMR: differences in solution and crystal forms of maltodextrin binding protein loaded with β-cyclodextrin. J Mol Biol 295:1265–1273Google Scholar
  112. Sun SJ, Siglin A, Williams JC, Polenova T (2009) Solid-state and solution NMR studies of the CAP-Gly domain of mammalian dynactin and its interaction with microtubules. J Am Chem Soc 131:10113–10126Google Scholar
  113. Tugarinov V, Choy WY, Orekhov VY, Kay LE (2005a) Solution NMR-derived global fold of a monomeric 82-kDa enzyme. Proc Natl Acad Sci USA 102:622–627ADSGoogle Scholar
  114. Tugarinov V, Kay LE, Ibraghimov I, Orekhov VY (2005b) High-resolution four-dimensional 1H-13C NOE spectroscopy using methyl-TROSY, sparse data acquisition, and multidimensional decomposition. J Am Chem Soc 127:2767–2775Google Scholar
  115. Tugarinov V, Kanelis V, Kay LE (2006) Isotope labeling strategies for the study of high-molecular-weight proteins by solution NMR spectroscopy. Nat Protoc 1:749–754Google Scholar
  116. Tycko R, Ishii Y (2003) Constraints on supramolecular structure in amyloid fibrils from two-dimensional solid-state NMR spectroscopy with uniform isotopic labeling. J Am Chem Soc 125:6606–6607Google Scholar
  117. Ullrich SJ, Glaubitz C (2013) Perspectives in enzymology of membrane proteins by solid-state NMR. Acc Chem Res 46:2164–2171Google Scholar
  118. Van Holde KE, Baldwin RL (1958) Rapid attainment of sedimentation equilibrium. J Phys Chem 62:734–743Google Scholar
  119. Venturi L, Woodward N, Hibberd D, Marighedo N, Gravelle A, Ferrante G, Hills BP (2008) Multidimensional cross-correlation relaxometry of aqueous protein systems. Appl Magn Reson 33:213–234Google Scholar
  120. Voss NR, Gerstein M (2005) Calculation of standard atomic volumes for RNA and comparison with proteins: RNA is packed more tightly. J Mol Biol 346:477–492Google Scholar
  121. Wassenaar TA, van Dijk M, Loureiro-Ferreira N, van der Schot G, de Vries SJ, Schmitz C, van der Zwan J, Boelens R, Giachetti A, Ferella L, Rosato A, Bertini I, Herrmann T, Jonker HRA, Bagaria A, Jaravine V, Guntert P, Schwalbe H, Vranken WF, Doreleijers JF, Vriend G, Vuister GW, Franke D, Kikhney A, Svergun DI, Fogh RH, Ionides J, Laue ED, Spronk C, Jurksa S, Verlato M, Badoer S, Dal Pra S, Mazzucato M, Frizziero E, Bonvin AMJJ (2012) WeNMR: structural biology on the grid. J Grid Comput 10:743–767Google Scholar
  122. Webber AL, Pell AJ, Barbet-Massin E, Knight MJ, Bertini I, Felli IC, Pierattelli R, Emsley L, Lesage A, Pintacuda G (2012) Combination of DQ and ZQ coherences for sensitive through-bond NMR correlation experiments in biosolids under ultra-fast MAS. ChemPhysChem 13:2405–2411Google Scholar
  123. Weingarth M, Baldus M (2013) Solid-state NMR-based approaches for supramolecular structure elucidation. Acc Chem Res 46:2164–2171Google Scholar
  124. Westfeld T, Verel R, Ernst M, Böckmann A, Meier BH (2012) Properties of the DREAM scheme and its optimization for application to proteins. J Biomol NMR 53:103–112Google Scholar
  125. Wider G (2005) NMR techniques used with very large biological macromolecules in solution. Methods Enzymol 394:382–398Google Scholar
  126. Yan S, Suiter CL, Hou G, Zhang H, Polenova T (2013) Probing structure and dynamics of protein assemblies by magic angle spinning NMR spectroscopy. Acc Chem Res 46:2047–2058Google Scholar
  127. Yang J, Aslimovska L, Glaubitz C (2011) Molecular dynamics of proteorhodopsin in lipid bilayers by solid-state NMR. J Am Chem Soc 133:4874–4881Google Scholar
  128. Zinkevich T, Chevelkov V, Reif B, Saalwachter K, Krushelnitsky A (2013) Internal protein dynamics on ps to mus timescales as studied by multi-frequency N solid-state NMR relaxation. J Biomol NMR. doi: 10.1007/s10858-013-9782-2

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Lucio Ferella
    • 1
  • Claudio Luchinat
    • 1
    • 2
    • 3
  • Enrico Ravera
    • 1
    • 3
  • Antonio Rosato
    • 1
    • 3
  1. 1.Center for Magnetic Resonance (CERM)University of FlorenceSesto FiorentinoItaly
  2. 2.Fondazione Farmacogenomica FiorGen OnlusSesto FiorentinoItaly
  3. 3.Department of ChemistryUniversity of FlorenceSesto FiorentinoItaly

Personalised recommendations