Journal of Biomolecular NMR

, Volume 56, Issue 4, pp 365–377 | Cite as

PAIN with and without PAR: variants for third-spin assisted heteronuclear polarization transfer

  • Vipin Agarwal
  • Mariana Sardo
  • Ingo Scholz
  • Anja Böckmann
  • Matthias Ernst
  • Beat H. Meier


In this article, we describe third-spin assisted heteronuclear recoupling experiments, which play an increasingly important role in measuring long-range heteronuclear couplings, in particular 15N–13C, in proteins. In the proton-assisted insensitive nuclei cross polarization (PAIN-CP) experiment (de Paëpe et al. in J Chem Phys 134:095101, 2011), heteronuclear polarization transfer is always accompanied by homonuclear transfer of the proton-assisted recoupling (PAR) type. We present a phase-alternating experiment that promotes heteronuclear (e.g. 15N → 13C) polarization transfer while simultaneously minimizing homonuclear (e.g.13C → 13C) transfer (PAIN without PAR). This minimization of homonuclear polarization transfer is based on the principle of the resonant second-order transfer (RESORT) recoupling scheme where the passive proton spins are irradiated by a phase-alternating sequence and the modulation frequency is matched to an integer multiple of the spinning frequency. The similarities and differences between the PAIN-CP and this het-RESORT experiment are discussed here.


Solid-state NMR Heteronuclear correlation PAIN-CP RESORT Heteronuclear RESORT 



Financial support was provided by the Swiss National Science Foundation (Grant 200020_124611), the ETH Zurich and the CNRS (ANR-12-BS08-0013-01 XLproteinSSNMR). M.S. also acknowledges the Portuguese Foundation for Science and Technology for a post-doctoral grant—SFRH/BPD/65978/2009. We also acknowledge support from the European Commission under the Seventh Framework Programme (FP7), contract Bio-NMR 261863.

Supplementary material

10858_2013_9756_MOESM1_ESM.pdf (816 kb)
Supplementary material 1 (PDF 815 kb)


  1. Bayro MJ, Huber M, Ramachandran R, Davenport TC, Meier BH, Ernst M, Griffin RG (2009) Dipolar truncation in magic-angle spinning NMR recoupling experiments. J Chem Phys 130:114506ADSCrossRefGoogle Scholar
  2. Bennett A, Griffin R, Vega S (1994) Recoupling of homo- and heteronuclear dipolar interactions in rotating solids. NMR: Basic Princ Prog 33:1–77Google Scholar
  3. Bennett A, Rienstra CM, Griffiths J, Zhen W, Lansbury P, Griffin R (1998) Homonuclear radio frequency-driven recoupling in rotating solids. J Chem Phys 108:9463–9479ADSCrossRefGoogle Scholar
  4. Böckmann A, Gardiennet C, Verel R, Hunkeler A, Loquet A, Pintacuda G, Emsley L, Meier BH, Lesage A (2009) Characterization of different water pools in solid-state NMR protein samples. J Biomol NMR 45:319–327CrossRefGoogle Scholar
  5. Brinkmann A, Eden M, Levitt M (2000) Synchronous helical pulse sequences in magic-angle spinning nuclear magnetic resonance: double quantum recoupling of multiple-spin systems. J Chem Phys 112:8539–8554ADSCrossRefGoogle Scholar
  6. Castellani F, van Rossum B, Diehl A, Schubert M, Rehbein K, Oschkinat H (2002) Structure of a protein determined by solid-state magic-angle-spinning NMR spectroscopy. Nature 420:98–102ADSCrossRefGoogle Scholar
  7. Cavanagh J, Fairbrother W, Palmer A, Rance M, Skelton N (2007) Protein NMR spectroscopy. Principles and practice. Elsevier Academic Press, AmsterdamGoogle Scholar
  8. de Paepe G (2012) Dipolar recoupling in magic angle spinning solid-state nuclear magnetic resonance. Annu Rev Phys Chem 63:661–684Google Scholar
  9. de Paepe G, Bayro M, Lewandowski J, Griffin R (2006) Broadband homonuclear correlation spectroscopy at high magnetic fields and MAS frequencies. J Am Chem Soc 128:1776–1777CrossRefGoogle Scholar
  10. de Paepe G, Lewandowski JR, Loquet A, Böckmann A, Griffin RG (2008) Proton assisted recoupling and protein structure determination. J Chem Phys 129:245101ADSCrossRefGoogle Scholar
  11. de Paepe G, Lewandowski JR, Loquet A, Eddy M, Megy S, Böckmann A, Griffin RG (2011) Heteronuclear proton assisted recoupling. J Chem Phys 134:095101ADSCrossRefGoogle Scholar
  12. Ernst RR, Bodenhausen G, Wokaun A (1989) Principles of nuclear magnetic resonance in one and two dimensional NMR. Oxford University Press, Oxford, UKGoogle Scholar
  13. Ernst M, Geen H, Meier BH (2006) Amplitude-modulated decoupling in rotating solids: a bimodal Floquet approach. Solid State Nucl Magn Reson 29:2–21CrossRefGoogle Scholar
  14. Etzkorn M, Böckmann A, Lange A, Baldus M (2004) Probing molecular interfaces using 2D magic-angle-spinning NMR on protein mixtures with different uniform labeling. J Am Chem Soc 126:14746–14751CrossRefGoogle Scholar
  15. Grommek A, Meier BH, Ernst M (2006) Distance information from proton-driven spin diffusion under MAS. Chem Phys Lett 427:404–409ADSCrossRefGoogle Scholar
  16. Heise H, Luca S, de Groot B, Grubmuller H, Baldus M (2005) Probing conformational disorder in neurotensin by two-dimensional solid-state NMR and comparison to molecular dynamics simulations. Biophys J 89:2113–2120CrossRefGoogle Scholar
  17. Helmus JJ, Surewicz K, Apostol MI, Surewicz WK, Jaroniec CP (2011) Intermolecular alignment in Y145Stop human prion protein amyloid fibrils probed by solid-state NMR. Spectroscopy 133:13934–13937Google Scholar
  18. Hohwy M, Jakobsen H, Eden M, Levitt M, Nielsen N (1998) Broadband dipolar recoupling in nuclear magnetic resonance of rotating solids: a compensated C7 pulse sequence. J Chem Phys 108:2686–2694ADSCrossRefGoogle Scholar
  19. Hohwy M, Rienstra CM, Jaroniec C, Griffin R (1999) Fivefold symmetric homonuclear dipolar recoupling in rotating solids: application to double quantum spectroscopy. J Chem Phys 110:7983–7992ADSCrossRefGoogle Scholar
  20. Hohwy M, Rienstra CM, Griffin R (2002) Band-selective homonuclear dipolar recoupling in rotating solids. J Chem Phys 117:4973–4987ADSCrossRefGoogle Scholar
  21. Hong M, Jakes K (1999) Selective and extensive C-13 labeling of a membrane protein for solid-state NMR investigations. J Biomol NMR 14:71–74CrossRefGoogle Scholar
  22. Jaroniec CP, Tounge BA, Herzfeld J, Griffin RG (2001) Frequency selective heteronuclear dipolar recoupling in rotating solids: accurate (13)C-(15)N distance measurements in uniformly (13)C,(15)N-labeled peptides. 123:3507–3519Google Scholar
  23. Kubo A, McDowell C (1988) Spectral spin diffusion in polycrystalline solids under magic-angle spinning. J Chem Soc Faraday Trans 84:3713–3730CrossRefGoogle Scholar
  24. Lamley JM, Lewandowski JR (2012) Simultaneous acquisition of homonuclear and heteronuclear long-distance contacts with time-shared third spin assisted recoupling. J Magn Reson 218:30–34ADSCrossRefGoogle Scholar
  25. Lange A, Luca S, Baldus M (2002) Structural constraints from proton-mediated rare-spin correlation spectroscopy in rotating solids. J Am Chem Soc 124:9704–9705CrossRefGoogle Scholar
  26. Lange A, Seidel K, Verdier L, Luca S, Baldus M (2003) Analysis of proton-proton transfer dynamics in rotating solids and their use for 3D structure determination. J Am Chem Soc 125:12640–12648CrossRefGoogle Scholar
  27. Lange A, Scholz I, Manolikas T, Ernst M, Meier BH (2009) Low-power cross polarization in fast magic-angle spinning NMR experiments. Chem Phys Lett 468:100–105ADSCrossRefGoogle Scholar
  28. LeMaster D, Kushlan D (1996) Dynamical mapping of E. coli thioredoxin via 13C NMR relaxation analysis. J Am Chem Soc 118:9255–9264CrossRefGoogle Scholar
  29. Leskes M, Madhu PK, Vega S (2010) Floquet theory in solid-state nuclear magnetic resonance. Prog Nucl Magn Reson Spectrosc 57:345–380Google Scholar
  30. Lewandowski JR, de Paepe G, Griffin RG (2007) Proton assisted insensitive nuclei cross polarization. J Am Chem Soc 129:728–729CrossRefGoogle Scholar
  31. Lewandowski JR, de Paepe G, Eddy MT, Struppe J, Maas W, Griffin RG (2009) Proton assisted recoupling at high spinning frequencies. J Phys Chem B 113:9062–9069CrossRefGoogle Scholar
  32. Loquet A, Bardiaux B, Gardiennet C, Blanchet C, Baldus M, Nilges M, Malliavin T, Böckmann A (2008) 3D Structure determination of the Crh protein from highly ambiguous solid-state NMR restraints. J Am Chem Soc 130:3579–3589CrossRefGoogle Scholar
  33. Loquet A, Lv G, Giller K, Becker S, Lange A (2011) 13C Spin dilution for simplified and complete solid-state NMR resonance assignment of insoluble biological assemblies. J Am Chem Soc 133:4722–4725CrossRefGoogle Scholar
  34. Manolikas T, Herrmann T, Meier BH (2008) Protein structure determination from 13C spin-diffusion solid-state NMR spectroscopy. J Am Chem Soc 130:3959–3966CrossRefGoogle Scholar
  35. Marulanda D, Tasayco ML, McDermott A, Cataldi M, Arriaran V, Polenova T (2004) Magic angle spinning solid-state NMR spectroscopy for structural studies of protein interfaces. Resonance assignments of differentially enriched Escherichia coli thioredoxin reassembled by fragment complementation. J Am Chem Soc 126:16608–16620Google Scholar
  36. Meier BH, Earl W (1987) A double-quantum filter for rotating solids. J Am Chem Soc 109:7937CrossRefGoogle Scholar
  37. Morcombe CR, Gaponenko V, Byrd RA, Zilm KW (2004) Diluting abundant spins by isotope edited radio frequency field assisted diffusion. J Am Chem Soc 126:7196–7197Google Scholar
  38. Nielsen AB, Székely K, Gath J, Ernst M, Nielsen NC, Meier BH (2012) Simultaneous acquisition of PAR and PAIN spectra. J Biomol NMR 52:1–6Google Scholar
  39. Samoson A, Tuherm T, Past J (2001) Ramped-speed cross polarization MAS NMR. J Magn Reson 149:264–267ADSCrossRefGoogle Scholar
  40. Scholz I (2010) Operator based Floquet theory and it’s applications to solid-state NMR. Diss ETH, pp 1–200Google Scholar
  41. Scholz I, Meier BH, Ernst M (2007) Operator-based triple-mode Floquet theory in solid-state NMR. J Chem Phys 127:204504–204513ADSCrossRefGoogle Scholar
  42. Scholz I, Huber M, Manolikas T, Meier BH, Ernst M (2008) MIRROR recoupling and its application to spin diffusion under fast magic-angle spinning. Chem Phys Lett 460:278–283ADSCrossRefGoogle Scholar
  43. Scholz I, Meier BH, Ernst M (2010a) NMR polarization transfer by second-order resonant recoupling: RESORT. Chem Phys Lett 485:335–342ADSCrossRefGoogle Scholar
  44. Scholz I, van Beek JD, Ernst M (2010b) Operator-based Floquet theory in solid-state NMR. Solid State Nucl Magn Reson 37:39–59CrossRefGoogle Scholar
  45. Schubert M, Manolikas T, Rogowski M, Meier BH (2006) Solid-state NMR spectroscopy of 10% 13C labeled ubiquitin: spectral simplification and stereospecific assignment of isopropyl groups. J Biomol NMR 35:167–173CrossRefGoogle Scholar
  46. Seuring C, Greenwald J, Wasmer C, Wepf R, Saupe SJ, Meier BH, Riek R (2012) The mechanism of toxicity in HET-S/HET-s prion incompatibility. PLoS Biol 10:e1001451CrossRefGoogle Scholar
  47. Smith S, Levante T, Meier BH, Ernst R (1994) Computer simulations in magnetic resonance: an object oriented programming approach. J Magn Reson Ser A 106:75–105CrossRefGoogle Scholar
  48. Stevens TJ, Fogh RH, Boucher W, Higman VA, Eisenmenger F, Bardiaux B, van Rossum B-J, Oschkinat H, Laue ED (2011) A software framework for analysing solid-state MAS NMR data. J Biomol NMR 51:437–447CrossRefGoogle Scholar
  49. Suter D, Ernst R (1985) Spin diffusion in resolved solid-state NMR spectra. Phys Rev B 32:5608–5627ADSCrossRefGoogle Scholar
  50. Szeverenyi N, Sullivan M, Maciel G (1982) Observation of spin exchange by two-dimensional fourier transform 13C cross polarization-magic-angle spinning. J Magn Reson 47:462–475Google Scholar
  51. Takegoshi K, Nakamura S, Terao T (2001) C-13–H-1 dipolar-assisted rotational resonance in magic-angle spinning NMR. Chem Phys Lett 344:631–637ADSCrossRefGoogle Scholar
  52. Takegoshi K, Nakamura S, Terao T (2003) 13C–1H dipolar-driven 13C–13C recoupling without 13C rf irradiation in nuclear magnetic resonance of rotating solids. J Chem Phys 118:2325–2341ADSCrossRefGoogle Scholar
  53. Tycko R, Dabbagh G (1990) Measurement of nuclear magnetic dipole-dipole couplings in magic. Chem Phys Lett 173:461ADSCrossRefGoogle Scholar
  54. van Melckebeke H, Wasmer C, Lange A, Ab E, Loquet A, Böckmann A, Meier BH (2010) Atomic-resolution three-dimensional structure of HET-s(218–289) amyloid fibrils by solid-state NMR spectroscopy. J Am Chem Soc 132:13765–13775CrossRefGoogle Scholar
  55. Verel R, Baldus M, Nijman M, Vanos J, Meier BH (1997) Adiabatic homonuclear polarization transfer in magic-angle-spinning solid-state NMR. Chem Phys Lett 280:31–39ADSCrossRefGoogle Scholar
  56. Verel R, Ernst M, Meier BH (2001) Adiabatic dipolar recoupling in solid-state NMR: the DREAM scheme. J Magn Reson 150:81–99ADSCrossRefGoogle Scholar
  57. Verhoeven A, Williamson P, Zimmermann H, Ernst M, Meier BH (2004) Rotational-resonance distance measurements in multi-spin systems. J Magn Reson 168:314–326ADSCrossRefGoogle Scholar
  58. Vijay-Kumar S, Bugg C, Wilkinson K, Vierstra R, Hatfield P, Cook W (1987) Comparison of the three-dimensional structures of human, yeast, and oat ubiquitin. J Biol Chem 262:6396–6399Google Scholar
  59. Vranken W, Boucher W, Stevens T, Fogh R, Pajon A, Llinas P, Ulrich E, Markley J, Ionides J, Laue E (2005) The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins 59:687–696CrossRefGoogle Scholar
  60. Wasmer C, Lange A, van Melckebeke H, Siemer AB, Riek R, Meier BH (2008) Amyloid fibrils of the HET-s(218–289) prion form a beta solenoid with a triangular hydrophobic core. Science 319:1523–1526ADSCrossRefGoogle Scholar
  61. Williamson P, Verhoeven A, Ernst M, Meier BH (2003) Determination of internuclear distances in uniformly labeled molecules by rotational-resonance solid-state NMR. J Am Chem Soc 125:2718–2722CrossRefGoogle Scholar
  62. Zech S, Wand A, McDermott A (2005) Protein structure determination by high-resolution solid-state NMR spectroscopy: application to microcrystalline ubiquitin. J Am Chem Soc 127:8618–8626CrossRefGoogle Scholar
  63. Zhou DH, Shea JJ, Nieuwkoop AJ, Franks WT, Wylie BJ, Mullen C, Sandoz D, Rienstra CM (2007) Solid-state protein-structure determination with proton-detected triple-resonance 3D magic-angle-spinning NMR spectroscopy. Angew Chem Int Ed 46:8380–8383CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Physical ChemistryETH ZurichZurichSwitzerland
  2. 2.Chemistry Department, CICECOUniversity of AveiroAveiroPortugal
  3. 3.IBCPUMR 5086 CNRS, Université de Lyon 1LyonFrance

Personalised recommendations