Journal of Biomolecular NMR

, Volume 56, Issue 4, pp 353–357 | Cite as

Partial alignment and measurement of residual dipolar couplings of proteins under high hydrostatic pressure



High-pressure NMR spectroscopy has emerged as a complementary approach for investigating various structural and thermodynamic properties of macromolecules. Noticeably absent from the array of experimental restraints that have been employed to characterize protein structures at high hydrostatic pressure is the residual dipolar coupling, which requires the partial alignment of the macromolecule of interest. Here we examine five alignment media that are commonly used at ambient pressure for this purpose. We find that the spontaneous alignment of Pf1 phage, d(GpG) and a C12E5/n-hexnanol mixture in a magnetic field is preserved under high hydrostatic pressure. However, DMPC/DHPC bicelles and collagen gel are found to be unsuitable. Evidence is presented to demonstrate that pressure-induced structural changes can be identified using the residual dipolar coupling.


Residual dipolar coupling High hydrostatic pressure Alignment media NMR spectroscopy Structure calculation 



This work was supported by the National Institutes of Health (NIH) grant GM 102447. We thank Dr. Kathleen G. Valentine for helpful discussion.

Conflict of interest

A. J. W. declares a competing financial interest as Member of Daedalus Innovations, LLC, a manufacturer of high-pressure and reverse micelle NMR apparatus.

Ethical Standards

A. J. W. declares that the experiments comply with the current laws of U.S.A.

Supplementary material

10858_2013_9754_MOESM1_ESM.pdf (158 kb)
Supplementary material 1 (PDF 140 kb)


  1. Akasaka K (2006) Probing conformational fluctuation of proteins by pressure perturbation. Chem Rev 106:1814–1835. doi: 10.1021/cr040440z CrossRefGoogle Scholar
  2. Barbieri R, Bertini I, Cavallaro G, Lee YM, Luchinat C, Rosato A (2002) Paramagnetically induced residual dipolar couplings for solution structure determination of lanthanide binding proteins. J Am Chem Soc 124:5581–5587. doi: 10.1021/Ja025528d CrossRefGoogle Scholar
  3. Bax A, Grishaev A (2005) Weak alignment NMR: a hawk-eyed view of biomolecular structure. Curr Opin Struc Biol 15:563–570. doi: 10.1016/J.Sbi.2005.08.006 CrossRefGoogle Scholar
  4. Cornilescu G, Marquardt JL, Ottiger M, Bax A (1998) Validation of protein structure from anisotropic carbonyl chemical shifts in a dilute liquid crystalline phase. J Am Chem Soc 120:6836–6837. doi: 10.1021/Ja9812610 CrossRefGoogle Scholar
  5. Fu YN, Kasinath V, Moorman VR, Nucci NV, Hilser VJ, Wand AJ (2012) Coupled motion in proteins revealed by pressure perturbation. J Am Chem Soc 134:8543–8550. doi: 10.1021/Ja3004655 CrossRefGoogle Scholar
  6. Fuentes EJ, Wand AJ (1998) Local stability and dynamics of apocytochrome b(562) examined by the dependence of hydrogen exchange on hydrostatic pressure. Biochemistry 37:9877–9883. doi: 10.1021/Bi980894o CrossRefGoogle Scholar
  7. Hansen MR, Mueller L, Pardi A (1998) Tunable alignment of macromolecules by filamentous phage yields dipolar coupling interactions. Nat Struct Biol 5:1065–1074. doi: 10.1038/4176 CrossRefGoogle Scholar
  8. Kamatari YO, Kitahara R, Yamada H, Yokoyama S, Akasaka K (2004) High-pressure NMR spectroscopy for characterizing folding intermediates and denatured states of proteins. Methods 34:133–143. doi: 10.1016/J.Ymeth.2004.03.010 CrossRefGoogle Scholar
  9. Kitahara R, Yokoyama S, Akasaka K (2005) NMR snapshots of a fluctuating protein structure: ubiquitin at 30 bar-3 kbar. J Mol Biol 347:277–285. doi: 10.1016/J.Jmb.2005.01.052 CrossRefGoogle Scholar
  10. Lange OF, Lakomek NA, Fares C, Schroder GF, Walter KFA, Becker S, Meiler J, Grubmuller H, Griesinger C, de Groot BL (2008) Recognition dynamics up to microseconds revealed from an RDC-derived ubiquitin ensemble in solution. Science 320:1471–1475. doi: 10.1126/Science.1157092 ADSCrossRefGoogle Scholar
  11. Lorieau J, Yao LS, Bax A (2008) Liquid crystalline phase of G-tetrad DNA for NMR study of detergent-solubilized proteins. J Am Chem Soc 130:7536–7537. doi: 10.1021/Ja801729f CrossRefGoogle Scholar
  12. Ma JH, Goldberg GI, Tjandra N (2008) Weak alignment of biomacromolecules in collagen gels: an alternative way to yield residual dipolar couplings for NMR measurements. J Am Chem Soc 130:16148–16149. doi: 10.1021/Ja807064k CrossRefGoogle Scholar
  13. Meirovitch E, Lee D, Walter KFA, Griesinger C (2012) Standard tensorial analysis of local ordering in proteins from residual dipolar couplings. J Phys Chem B 116:6106–6117. doi: 10.1021/jp301451v CrossRefGoogle Scholar
  14. Ottiger M, Bax A (1999) Bicelle-based liquid crystals for NMR-measurement of dipolar couplings at acidic and basic pH values. J Biomol NMR 13:187–191. doi: 10.1023/A:1008395916985 CrossRefGoogle Scholar
  15. Prestegard JH, Kishore AI (2001) Partial alignment of biomolecules: an aid to NMR characterization. Curr Opin Chem Biol 5:584–590. doi: 10.1016/S1367-5931(00)00247-7 CrossRefGoogle Scholar
  16. Prestegard JH, Al-Hashimi HM, Tolman JR (2000) NMR structures of biomolecules using field oriented media and residual dipolar couplings. Q Rev Biophys 33:371–424. doi: 10.1017/S0033583500003656 CrossRefGoogle Scholar
  17. Prestegard JH, Bougault CM, Kishore AI (2004) Residual dipolar couplings in structure determination of biomolecules. Chem Rev 104:3519–3540. doi: 10.1021/Cr030419i CrossRefGoogle Scholar
  18. Roche J, Caro JA, Norberto DR, Barthe P, Roumestand C, Schlessman JL, Garcia AE, Garcia-Moreno BE, Royer CA (2012) Cavities determine the pressure unfolding of proteins. Proc Natl Acad Sci USA 109:6945–6950. doi: 10.1073/pnas.1200915109 ADSCrossRefGoogle Scholar
  19. Ruckert M, Otting G (2000) Alignment of biological macromolecules in novel nonionic liquid crystalline media for NMR experiments. J Am Chem Soc 122:7793–7797. doi: 10.1021/Ja001068h CrossRefGoogle Scholar
  20. Tjandra N, Bax A (1997) Direct measurement of distances and angles in biomolecules by NMR in a dilute liquid crystalline medium. Science 278:1111–1114. doi: 10.1126/Science.278.5340.1111 ADSCrossRefGoogle Scholar
  21. Tjandra N, Omichinski JG, Gronenborn AM, Clore GM, Bax A (1997) Use of dipolar H-1-N-15 and H-1-C-13 couplings in the structure determination of magnetically oriented macromolecules in solution. Nat Struct Biol 4:732–738. doi: 10.1038/Nsb0997-732 CrossRefGoogle Scholar
  22. Tolman JR, Ruan K (2006) NMR residual dipolar couplings as probes of biomolecular dynamics. Chem Rev 106:1720–1736. doi: 10.1021/cr040429z CrossRefGoogle Scholar
  23. Tolman JR, Flanagan JM, Kennedy MA, Prestegard JH (1995) Nuclear magnetic dipole interactions in field-oriented proteins—information for structure determination in solution. Proc Natl Acad Sci USA 92:9279–9283. doi: 10.1073/Pnas.92.20.9279 ADSCrossRefGoogle Scholar
  24. Valafar H, Prestegard JH (2004) REDCAT: a residual dipolar coupling analysis tool. J Magn Reson 167:228–241. doi: 10.1016/J.Jmr.2003.12.012 ADSCrossRefGoogle Scholar
  25. Weber G, Drickamer HG (1983) The effect of high-pressure upon proteins and other biomolecules. Q Rev Biophys 16:89–112CrossRefGoogle Scholar
  26. Zweckstetter M, Bax A (2001) Characterization of molecular alignment in aqueous suspensions of Pf1 bacteriophage. J Biomol NMR 20:365–377. doi: 10.1023/A:1011263920003 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of Biochemistry and Biophysics, Johnson Research FoundationUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations