Journal of Biomolecular NMR

, Volume 58, Issue 4, pp 251–257 | Cite as

Resolving complex mixtures: trilinear diffusion data

  • Johannes Björnerås
  • Adolfo Botana
  • Gareth A. Morris
  • Mathias Nilsson


Complex mixtures are at the heart of biology, and biomacromolecules almost always exhibit their function in a mixture, e.g., the mode of action for a spider venom is typically dependent on a cocktail of compounds, not just the protein. Information about diseases is encoded in body fluids such as urine and plasma in the form of metabolite concentrations determined by the actions of enzymes. To understand better what is happening in real living systems we urgently need better methods to characterize such mixtures. In this paper we describe a potent way to disentangle the NMR spectra of mixture components, by exploiting data that vary independently in three or more dimensions, allowing the use of powerful algorithms to decompose the data to extract the information sought. The particular focus of this paper is on NMR diffusion data, which are typically bilinear but can be extended by a third dimension to give the desired data structure.


Diffusion Mixtures DOSY Relaxation PARAFAC Trilinear Multivariate 


  1. Adams RW, Aguilar JA, Cassani J, Morris GA, Nilsson M (2011) Resolving natural product epimer spectra by matrix-assisted DOSY. Org Biomol Chem 9(20):7062–7064CrossRefGoogle Scholar
  2. Andersson CA, Bro R (2000) The N-way Toolbox for MATLAB. Chemom Intell Lab Syst 52(1):1–4CrossRefGoogle Scholar
  3. Appellof CJ, Davidson ER (1981) Strategies for analyzing data from video fluorometric monitoring of liquid chromatographic effluents. Anal Chem 53(13):2053–2056. doi: 10.1021/ac00236a025 CrossRefGoogle Scholar
  4. Barbe L, Lundberg E, Oksvold P, Stenius A, Lewin E, Björling E, Asplund A, Pontén F, Brismar H, Uhlén M, Andersson-Svahn H (2008) Toward a confocal subcellular atlas of the human proteome. Mol Cell Proteomics 7(3):499–508. doi: 10.1074/mcp.M700325-MCP200 CrossRefGoogle Scholar
  5. Barjat H, Morris GA, Smart S, Swanson AG, Williams SCR (1995) High-resolution diffusion-ordered 2D spectroscopy (HR-DOSY): a new tool for the analysis of complex mixtures. J Magn Reson B 108(2):170–172CrossRefGoogle Scholar
  6. Botana A, Aguilar JA, Nilsson M, Morris GA (2011) J-modulation effects in DOSY experiments and their suppression: the Oneshot45 experiment. J Magn Reson 208(2):270–278. doi: 10.1016/j.jmr.2010.11.012 CrossRefADSGoogle Scholar
  7. Bowyer PJ, Swanson AG, Morris GA (2001) Analyzing and correcting spectrometer temperature sensitivity. J Magn Reson 152(2):234–246CrossRefADSGoogle Scholar
  8. Bro R (1997) PARAFAC. Tutorial and applications. Chemom Intell Lab Syst 38(2):149–171CrossRefGoogle Scholar
  9. Bro R, Viereck N, Toft M, Toft H, Hansen PI, Engelsen SB (2010) Mathematical chromatography solves the cocktail party effect in mixtures using 2D spectra and PARAFAC. Trends Analyt Chem 29(4):281–284. doi: 10.1016/j.trac.2010.01.008 CrossRefGoogle Scholar
  10. Cassani J, Nilsson M, Morris GA (2012) Flavonoid mixture analysis by matrix-assisted diffusion-ordered spectroscopy. J Nat Prod 75(2):131–134CrossRefGoogle Scholar
  11. Cattell R (1944) “Parallel proportional profiles” and other principles for determining the choice of factors by rotation. Psychometrika 9(4):267–283. doi: 10.1007/bf02288739 CrossRefGoogle Scholar
  12. Colbourne AA, Morris GA, Nilsson M (2011) Local covariance order diffusion-ordered spectroscopy: a powerful tool for mixture analysis. J Am Chem Soc 133(20):7640–7643. doi: 10.1021/ja2004895 CrossRefGoogle Scholar
  13. Day IJ (2011) On the inversion of diffusion NMR data: Tikhonov regularization and optimal choice of the regularization parameter. J Magn Reson 211(2):178–185CrossRefADSGoogle Scholar
  14. Delsuc MA, Malliavin TE (1998) Maximum entropy processing of DOSY NMR spectra. Anal Chem 70(10):2146–2148CrossRefGoogle Scholar
  15. Dyrby M, Petersen M, Whittaker AK, Lambert L, Nørgaard L, Bro R, Engelsen SB (2005) Analysis of lipoproteins using 2D diffusion-edited NMR spectroscopy and multi-way chemometrics. Anal Chim Acta 531(2):209–216. doi: 10.1016/j.aca.2004.10.052 CrossRefGoogle Scholar
  16. Evans R, Haiber S, Nilsson M, Morris GA (2009) Isomer resolution by micelle-assisted diffusion-ordered spectroscopy. Anal Chem 81(11):4548–4550. doi: 10.1021/ac9005777 CrossRefGoogle Scholar
  17. Geiger T, Wehner A, Schaab C, Cox J, Mann M (2012) Comparative proteomic analysis of eleven common cell lines reveals ubiquitous but varying expression of most proteins. Mol Cell Proteomics 11(3). doi: 10.1074/mcp.M111.014050
  18. Harshman R (1970) Foundations of the PARAFAC procedure. UCLA Work Papers Phon 16:1–84Google Scholar
  19. Hoffman RE, Arzuan H, Pemberton C, Aserin A, Garti N (2008) High-resolution NMR “chromatography” using a liquids spectrometer. J Magn Reson 194(2):295–299CrossRefADSGoogle Scholar
  20. Istratov AA, Vyvenko OF (1999) Exponential analysis in physical phenomena. Rev Sci Instrum 70(2):1233–1257CrossRefADSGoogle Scholar
  21. Johnson CS Jr (1999) Diffusion ordered nuclear magnetic resonance spectroscopy: principles and applications. Prog Nucl Magn Reson Spectrosc 34(3–4):203–256CrossRefADSGoogle Scholar
  22. Kavakka JS, Parviainen V, Wähälä K, Kilpeläinen I, Heikkinen S (2010) Enhanced chromatographic NMR with polyethyleneglycol. A novel resolving agent for diffusion ordered spectroscopy. Magn Reson Chem 48(10):777–781. doi: 10.1002/mrc.2660 CrossRefGoogle Scholar
  23. Khajeh M, Botana A, Bernstein MA, Nilsson M, Morris GA (2010) Reaction kinetics studied using diffusion-ordered spectroscopy and multiway chemometrics. Anal Chem 82(5):2102–2108. doi: 10.1021/ac100110m CrossRefGoogle Scholar
  24. Morris GA (2007) Diffusion-ordered spectroscopy. In: Harris RK, Wasylishen RE (eds) Encyclopedia of magnetic resonance. Wiley, Chichester. doi: 10.1002/9780470034590.emrstm0119.pub2
  25. Morris KF, Johnson CS (1993) Resolution of discrete and continuous molecular size distributions by means of diffusion-ordered 2D NMR spectroscopy. J Am Chem Soc 115(10):4291–4299CrossRefGoogle Scholar
  26. Morris KF, Stilbs P, Johnson CS (1994) Analysis of mixtures based on molecular-size and hydrophobicity by means of diffusion-ordered 2D NMR. Anal Chem 66(2):211–215. doi: 10.1021/ac00074a006 CrossRefGoogle Scholar
  27. Morris GA, Barjat H, Home TJ (1997) Reference deconvolution methods. Prog Nucl Magn Reson Spectrosc 31(2–3):197–257CrossRefGoogle Scholar
  28. Nilsson M (2009) The DOSY toolbox: a new tool for processing PFG NMR diffusion data. J Magn Reson 200(2):296–302CrossRefMathSciNetADSGoogle Scholar
  29. Nilsson M, Morris GA (2006) Correction of systematic errors in CORE processing of DOSY data. Magn Reson Chem 44(7):655–660. doi: 10.1002/mrc.1805 CrossRefGoogle Scholar
  30. Nilsson M, Morris GA (2007) Improved DECRA processing of DOSY data: correcting for non-uniform field gradients. Magn Reson Chem 45(8):656–660. doi: 10.1002/mrc.2023 CrossRefGoogle Scholar
  31. Nilsson M, Morris GA (2008) Speedy component resolution: an improved tool for processing diffusion-ordered spectroscopy data. Anal Chem 80(10):3777–3782. doi: 10.1021/ac7025833 CrossRefGoogle Scholar
  32. Nilsson M, Connell MA, Davis AL, Morris GA (2006) Biexponential fitting of diffusion-ordered NMR data: practicalities and limitations. Anal Chem 78(9):3040–3045CrossRefGoogle Scholar
  33. Nilsson M, Botana A, Morris GA (2009a) T1-diffusion-ordered spectroscopy: nuclear magnetic resonance mixture analysis using parallel factor analysis. Anal Chem 81(19):8119–8125. doi: 10.1021/ac901321w CrossRefGoogle Scholar
  34. Nilsson M, Khajeh M, Botana A, Bernstein MA, Morris GA (2009b) Diffusion NMR and trilinear analysis in the study of reaction kinetics. Chem Commun 10:1252–1254. doi: 10.1039/b820813a CrossRefGoogle Scholar
  35. Pedersen HT, Dyrby M, Engelsen SB, Bro R, Webb GA (2006) Application of multi-way analysis to 2D NMR data. In: Webb G (ed) Annual reports on NMR spectroscopy, vol 59, Academic Press, New York, pp 207–233Google Scholar
  36. Pelta MD, Morris GA, Stchedroff MJ, Hammond SJ (2002) A one-shot sequence for high-resolution diffusion-ordered spectroscopy. Magn Reson Chem 40(13):S147–S152CrossRefGoogle Scholar
  37. Rogerson AK, Aguilar JA, Nilsson M, Morris GA (2011) Simultaneous enhancement of chemical shift dispersion and diffusion resolution in mixture analysis by diffusion-ordered NMR spectroscopy. Chem Commun 47. doi: 10.1039/c1cc12456k
  38. Sinnaeve D (2012) The Stejskal–Tanner equation generalized for any gradient shape-an overview of most pulse sequences measuring free diffusion. Concepts Magn Reson Part A 40A(2):39–65. doi: 10.1002/cmr.a.21223 CrossRefGoogle Scholar
  39. Stegeman A, ten Berge JMF, De Lathauwer L (2006) Sufficient conditions for uniqueness in Candecomp/Parafac and Indscal with random component matrices. Psychometrika 71(2):219–229. doi: 10.1007/11336-006-1278-2 CrossRefMathSciNetGoogle Scholar
  40. Stejskal EO, Tanner JE (1965) Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J Chem Phys 42(1):288–292CrossRefADSGoogle Scholar
  41. Stilbs P (1982) Fourier-transform NMR pulsed-gradient spin–echo (FT-PGSE) self-diffusion measurements of solubilization equilibria in SDS solutions. J Colloid Interface Sci 87(2):385–394. doi: 10.1016/0021-9797(82)90335-6 CrossRefGoogle Scholar
  42. Stilbs P (2010) RECORD processing: a robust pathway to component-resolved HR-PGSE NMR diffusometry. J Magn Reson 207(2):332–336. doi: 10.1016/j.jmr.2010.09.019 CrossRefADSGoogle Scholar
  43. Stilbs P (2013) Automated CORE, RECORD, and GRECORD processing of multi-component PGSE NMR diffusometry data. Eur Biophys J Biophys Lett 42(1):25–32. doi: 10.1007/s00249-012-0794-8 CrossRefGoogle Scholar
  44. Stilbs P, Paulsen K (1996) Global least-squares analysis of large, correlated spectral data sets and application to chemical kinetics and time-resolved fluorescence. Rev Sci Instrum 67(12):4380–4386CrossRefADSGoogle Scholar
  45. Stilbs P, Paulsen K, Griffiths PC (1996) Global least-squares analysis of large, correlated spectral data sets: application to component-resolved FT-PGSE NMR spectroscopy. J Phys Chem 100(20):8180–8189CrossRefGoogle Scholar
  46. Tormena CF, Evans R, Haiber S, Nilsson M, Morris GA (2010) Matrix-assisted diffusion-ordered spectroscopy: mixture resolution by NMR using SDS micelles. Magn Reson Chem 48(7):550–553. doi: 10.1002/mrc.2621 CrossRefGoogle Scholar
  47. Tormena CF, Evans R, Haiber S, Nilsson M, Morris GA (2012) Matrix-assisted diffusion-ordered spectroscopy: application of surfactant solutions to the resolution of isomer spectra. Magn Reson Chem 50(6):458–465. doi: 10.1002/mrc.3822 CrossRefGoogle Scholar
  48. Van Gorkom LCM, Hancewicz TM (1998) Analysis of DOSY and GPC-NMR experiments on polymers by multivariate curve resolution. J Magn Reson 130(1):125–130CrossRefADSGoogle Scholar
  49. Viel S, Ziarelli F, Caldarelli S (2003) Enhanced diffusion-edited NMR spectroscopy of mixtures using chromatographic stationary phases. Proc Natl Acad Sci USA 100(17):9696–9698CrossRefADSGoogle Scholar
  50. Windig W, Antalek B (1997) Direct exponential curve resolution algorithm (DECRA): a novel application of the generalized rank annihilation method for a single spectral mixture data set with exponentially decaying contribution profiles. Chemom Intell Lab Syst 37(2):241–254CrossRefGoogle Scholar
  51. Zielinski ME, Morris KF (2009) Using perdeuterated surfactant micelles to resolve mixture components in diffusion-ordered NMR spectroscopy. Magn Reson Chem 47(1):53–56CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Johannes Björnerås
    • 1
  • Adolfo Botana
    • 2
    • 3
  • Gareth A. Morris
    • 3
  • Mathias Nilsson
    • 3
    • 4
  1. 1.Department of Biochemistry and BiophysicsStockholm UniversityStockholmSweden
  2. 2.Agilent Technologies UK LimitedOxfordUK
  3. 3.School of ChemistryUniversity of ManchesterManchesterUK
  4. 4.Department of Food Science, Faculty of ScienceUniversity of CopenhagenFrederiksberg CDenmark

Personalised recommendations