Skip to main content
Log in

Efficient resonance assignment of proteins in MAS NMR by simultaneous intra- and inter-residue 3D correlation spectroscopy

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

Resonance assignment is the first step in NMR structure determination. For magic angle spinning NMR, this is typically achieved with a set of heteronuclear correlation experiments (NCaCX, NCOCX, CONCa) that utilize SPECIFIC-CP 15N–13C transfers. However, the SPECIFIC-CP transfer efficiency is often compromised by molecular dynamics and probe performance. Here we show that one-bond ZF-TEDOR 15N–13C transfers provide simultaneous NCO and NCa correlations with at least as much sensitivity as SPECIFIC-CP for some non-crystalline samples. Furthermore, a 3D ZF-TEDOR-CC experiment provides heteronuclear sidechain correlations and robustness with respect to proton decoupling and radiofrequency power instabilities. We demonstrate transfer efficiencies and connectivities by application of 3D ZF-TEDOR-DARR to a model microcrystalline protein, GB1, and a less ideal system, GvpA in intact gas vesicles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ader C, Pongs O, Becker S, Baldus M (2010) Protein dynamics detected in a membrane-embedded potassium channel using two-dimensional solid-state NMR spectroscopy. Biochim Biophys Acta-Biomembranes 1798(2):286–290. doi:10.1016/j.bbamem.2009.06.023

    Article  Google Scholar 

  • Andreas LB, Eddy MT, Pielak RM, Chou J, Griffin RG (2010) Magic angle spinning NMR investigation of influenza A M2(18–60): support for an allosteric mechanism of inhibition. J Am Chem Soc 132(32):10958–10960. doi:10.1021/ja101537p

    Article  Google Scholar 

  • Andreas LB, Eddy MT, Chou JJ, Griffin RG (2012) Magic-angle-spinning NMR of the drug resistant S31N M2 proton transporter from influenza A. J Am Chem Soc 134(17):7215–7218. doi:10.1021/ja3003606

    Article  Google Scholar 

  • Bajaj VS, van der Wel PCA, Griffin RG (2009) Observation of a low-temperature, dynamically driven structural transition in a polypeptide by solid-state NMR spectroscopy. J Am Chem Soc 131(1):118–128. doi:10.1021/ja8045926

    Article  Google Scholar 

  • Baldus M, Petkova AT, Herzfeld J, Griffin RG (1998) Cross polarization in the tilted frame: assignment and spectral simplification in heteronuclear spin systems. Mol Phys 95(6):1197–1207. doi:10.1080/002689798166215

    Article  ADS  Google Scholar 

  • Bateman DA, Tycko R, Wickner RB (2011) Experimentally derived structural constraints for amyloid fibrils of wild-type transthyretin. Biophys J 101(10):2485–2492. doi:10.1016/j.bpj.2011.10.009

    Article  Google Scholar 

  • Bayro MJ, Maly T, Birkett NR, MacPhee CE, Dobson CM, Griffin RG (2010) High-resolution MAS NMR analysis of PI3-SH3 amyloid fibrils: backbone conformation and implications for protofilament assembly and structure. Biochemistry 49(35):7474–7484. doi:10.1021/bi100864t

    Article  Google Scholar 

  • Bayro MJ, Debelouchina GT, Eddy MT, Birkett NR, MacPhee CE, Rosay M, Maas WE, Dobson CM, Griffin RG (2011) Intermolecular structure determination of amyloid fibrils with magic-angle spinning and dynamic nuclear polarization NMR. J Am Chem Soc 133(35):13967–13974. doi:10.1021/ja203756x

    Article  Google Scholar 

  • Bayro MJ, Daviso E, Belenky M, Griffin RG, Herzfeld J (2012) An amyloid organelle, solid-state NMR evidence for cross-beta assembly of gas vesicles. J Biol Chem 287(5):3479–3484. doi:10.1074/jbc.M111.313049

    Article  Google Scholar 

  • Bennett AE, Becerra LR, Griffin RG (1994) Frequency-selective heteronuclear recoupling in rotating solids. J Chem Phys 100(2):812–814. doi:10.1063/1.466563

    Article  ADS  Google Scholar 

  • Bernstein FC, Koetzle TF, Williams GJB, Meyer EF, Brice MD, Rodgers JR, Kennard O, Shimanouchi T, Tasumi M (1977) Protein data bank—computer-based archival file for macromolecular structures. J Mol Biol 112(3):535–542. doi:10.1016/s0022-2836(77)80200-3

    Article  Google Scholar 

  • Bhate MP, Wylie BJ, Tian L, McDermott AE (2010) Conformational dynamics in the selectivity filter of KcsA in response to potassium ion concentration. J Mol Biol 401(2):155–166. doi:10.1016/j.jmb.2010.06.031

    Article  Google Scholar 

  • Bockmann A (2008) 3D protein structures by solid-state NMR spectroscopy: ready for high resolution. Angew Chem Int Ed 47(33):6110–6113. doi:10.1002/anie.200801352

    Article  Google Scholar 

  • Brinkmann A, Levitt MH (2001) Symmetry principles in the nuclear magnetic resonance of spinning solids: heteronuclear recoupling by generalized Hartmann-Hahn sequences. J Chem Phys 115(1):357–384. doi:10.1063/1.1377031

    Article  ADS  Google Scholar 

  • Comellas G, Lemkau LR, Zhou DH, George JM, Rienstra CM (2012) Structural intermediates during alpha-synuclein fibrillogenesis on phospholipid vesicles. J Am Chem Soc 134(11):5090–5099. doi:10.1021/ja209019s

    Article  Google Scholar 

  • Debelouchina GT, Platt GW, Bayro MJ, Radford SE, Griffin RG (2010a) Intermolecular alignment in beta(2)-microglobulin amyloid fibrils. J Am Chem Soc 132(48):17077–17079. doi:10.1021/ja1079871

    Article  Google Scholar 

  • Debelouchina GT, Platt GW, Bayro MJ, Radford SE, Griffin RG (2010b) Magic angle spinning NMR analysis of beta(2)-microglobulin amyloid fibrils in two distinct morphologies. J Am Chem Soc 132(30):10414–10423. doi:10.1021/ja102775u

    Article  Google Scholar 

  • Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) Nmrpipe—a multidimensional spectral processing system based on unix pipes. J Biomol NMR 6(3):277–293. doi:10.1007/bf00197809

    Article  Google Scholar 

  • Eddy MT, Ong T-C, Clark L, Teijido O, van der Wel PCA, Garces R, Wagner G, Rostovtseva TK, Griffin RG (2012a) Lipid dynamics and protein-lipid interactions in 2D crystals formed with the beta-barrel integral membrane protein VDAC1. J Am Chem Soc 134(14):6375–6387. doi:10.1021/ja300347v

    Article  Google Scholar 

  • Eddy MT, Ruben D, Griffin RG, Herzfeld J (2012b) Deterministic schedules for robust and reproducible non-uniform sampling in multidimensional NMR. J Magn Reson 214:296–301. doi:10.1016/j.jmr.2011.12.002

    Article  ADS  Google Scholar 

  • Franks WT, Zhou DH, Wylie BJ, Money BG, Graesser DT, Frericks HL, Sahota G, Rienstra CM (2005) Magic-angle spinning solid-state NMR spectroscopy of the beta 1 immunoglobulin binding domain of protein G (GB1): N-15 and C-13 chemical shift assignments and conformational analysis. J Am Chem Soc 127(35):12291–12305. doi:10.1021/ja044497e

    Article  Google Scholar 

  • Fu RQ, Smith SA, Bodenhausen G (1997) Recoupling of heteronuclear dipolar interactions in solid state magic-angle spinning NMR by simultaneous frequency and amplitude modulation. Chem Phys Lett 272(5–6):361–369. doi:10.1016/s0009-2614(97)00537-x

    Article  ADS  Google Scholar 

  • Gullion T, Schaefer J (1989) Rotational-echo double-resonance nmr. J Magn Reson 81(1):196–200. doi:10.1016/0022-2364(89)90280-1

    Google Scholar 

  • Hansen JO, Kehlet C, Bjerring M, Vosegaard T, Glaser SJ, Khaneja N, Nielsen NC (2007) Optimal control based design of composite dipolar recoupling experiments by analogy to single-spin inversion pulses. Chem Phys Lett 447(1–3):154–161. doi:10.1016/j.cplett.2007.08.072

    Article  ADS  Google Scholar 

  • Helmus JJ, Nadaud PS, Hofer N, Jaroniec CP (2008) Determination of methyl C-13-N-15 dipolar couplings in peptides and proteins by three-dimensional and four-dimensional magic-angle spinning solid-state NMR spectroscopy. J Chem Phys 128 (5):052314/1–16. doi:10.1063/1.2817638

    Google Scholar 

  • Higman VA, Flinders J, Hiller M, Jehle S, Markovic S, Fiedler S, van Rossum B-J, Oschkinat H (2009) Assigning large proteins in the solid state: a MAS NMR resonance assignment strategy using selectively and extensively C-13-labelled proteins. J Biomol NMR 44(4):245–260. doi:10.1007/s10858-009-9338-7

    Article  Google Scholar 

  • Higman VA, Varga K, Aslimovska L, Judge PJ, Sperling LJ, Rienstra CM, Watts A (2011) The Conformation of bacteriorhodopsin loops in purple membranes resolved by solid-state MAS NMR spectroscopy. Angew Chem Int Ed 50(36):8432–8435. doi:10.1002/anie.201100730

    Article  Google Scholar 

  • Hing AW, Vega S, Schaefer J (1992) Transferred-echo double-resonance NMR. J Magn Reson 96(1):205–209. doi:10.1016/0022-2364(92)90305-q

    Google Scholar 

  • Hu K-N, McGlinchey RP, Wickner RB, Tycko R (2011) Segmental polymorphism in a functional amyloid. Biophys J 101(9):2242–2250. doi:10.1016/j.bpj.2011.09.051

    Article  Google Scholar 

  • Jaroniec CP, MacPhee CE, Astrof NS, Dobson CM, Griffin RG (2002a) Molecular conformation of a peptide fragment of transthyretin in an amyloid fibril. Proc Natl Acad Sci USA 99(26):16748–16753. doi:10.1073/pnas.252625999

    Article  ADS  Google Scholar 

  • Jaroniec CP, Filip C, Griffin RG (2002b) 3D TEDOR NMR experiments for the simultaneous measurement of multiple carbon-nitrogen distances in uniformly C-13, N-15-labeled solids. J Am Chem Soc 124(36):10728–10742. doi:10.1021/ja026385y

    Article  Google Scholar 

  • Kehlet C, Bjerring M, Sivertsen AC, Kristensen T, Enghild JJ, Glaser SJ, Khaneja N, Nielsen NC (2007) Optimal control based NCO and NCA experiments for spectral assignment in biological solid-state NMR spectroscopy. J Magn Reson 188(2):216–230. doi:10.1016/j.jmr.2007.06.011

    Article  ADS  Google Scholar 

  • Kryndushkin DS, Wickner RB, Tycko R (2011) The Core of Ure2p Prion fibrils is formed by the N-terminal segment in a parallel cross-beta structure: evidence from solid-state NMR. J Mol Biol 409(2):263–277. doi:10.1016/j.jmb.2011.03.067

    Article  Google Scholar 

  • Lemkau LR, Comellas G, Kloepper KD, Woods WS, George JM, Rienstra CM (2012) Mutant protein A30P alpha-synuclein adopts wild-type fibril structure, despite slower fibrillation kinetics. J Biol Chem 287(14):11526–11532. doi:10.1074/jbc.M111.306902

    Article  Google Scholar 

  • Lewandowski JR, De Paepe G, Griffin RG (2007) Proton assisted insensitive nuclei cross polarization. J Am Chem Soc 129(4):728–729. doi:10.1021/ja0650394

    Article  Google Scholar 

  • Li Y, Berthold DA, Gennis RB, Rienstra CM (2008) Chemical shift assignment of the transmembrane helices of DsbB, a 20-kDa integral membrane enzyme, by 3D magic-angle spinning NMR spectroscopy. Protein Sci 17(2):199–204. doi:10.1110/ps.073225008

    Article  Google Scholar 

  • Li J, Hoop CL, Kodali R, Sivanandam VN, van der Wel PCA (2011) Amyloid-like fibrils from a domain-swapping protein feature a parallel, in-register conformation without native-like interactions. J Biol Chem 286(33):28988–28995. doi:10.1074/jbc.M111.261750

    Article  Google Scholar 

  • Long JR, Sun BQ, Bowen A, Griffin RG (1994) Molecular dynamics and magic-angle-spinning NMR. J Am Chem Soc 116(26):11950–11956. doi:10.1021/ja00105a039

    Article  Google Scholar 

  • Lv G, Kumar A, Giller K, Orcellet ML, Riedel D, Fernandez CO, Becker S, Lange A (2012) Structural comparison of mouse and human alpha-synuclein amyloid fibrils by solid-state NMR. J Mol Biol 420(1–2):99–111. doi:10.1016/j.jmb.2012.04.009

    Article  Google Scholar 

  • Matsuki Y, Eddy MT, Herzfeld J (2009) Spectroscopy by integration of frequency and time domain information for fast acquisition of high-resolution dark spectra. J Am Chem Soc 131(13):4648–4656. doi:10.1021/ja807893k

    Article  Google Scholar 

  • Matsuki Y, Eddy MT, Griffin RG, Herzfeld J (2010) Rapid three-dimensional MAS NMR spectroscopy at critical sensitivity. Angew Chem Int Ed 49(48):9215–9218. doi:10.1002/anie.201003329

    Article  Google Scholar 

  • Maus DC, Copie V, Sun BQ, Griffiths JM, Griffin RG, Luo SF, Schrock RR, Liu AH, Seidel SW, Davis WM, Grohmann A (1996) A solid-state NMR study of tungsten methyl group dynamics in W(eta(5)-C(5)Me(5))Me(4) PF6. J Am Chem Soc 118(24):5665–5671. doi:10.1021/ja960248h

    Article  Google Scholar 

  • Morcombe CR, Zilm KW (2003) Chemical shift referencing in MAS solid state NMR. J Magn Reson 162(2):479–486. doi:10.1016/s1090-7807(03)00082-x

    Article  ADS  Google Scholar 

  • Nieuwkoop AJ, Rienstra CM (2010) Supramolecular protein structure determination by site-specific long-range intermolecular solid state NMR Spectroscopy. J Am Chem Soc 132(22):7570–7571. doi:10.1021/ja100992y

    Article  Google Scholar 

  • Paravastu AK, Leapman RD, Yau W-M, Tycko R (2008) Molecular structural basis for polymorphism in Alzheimer’s beta-amyloid fibrils. Proc Natl Acad Sci USA 105(47):18349–18354. doi:10.1073/pnas.0806270105

    Article  ADS  Google Scholar 

  • Paravastu AK, Qahwash I, Leapman RD, Meredith SC, Tycko R (2009) Seeded growth of beta-amyloid fibrils from Alzheimer’s brain-derived fibrils produces a distinct fibril structure. Proc Natl Acad Sci USA 106(18):7443–7448. doi:10.1073/pnas.0812033106

    Article  ADS  Google Scholar 

  • Qiang W, Yau W-M, Luo Y, Mattson MP, Tycko R (2012) Antiparallel beta-sheet architecture in Iowa-mutant beta-amyloid fibrils. Proc Natl Acad Sci USA 109(12):4443–4448. doi:10.1073/pnas.1111305109

    Article  ADS  Google Scholar 

  • Renault M, Bos MP, Tommassen J, Baldus M (2011) Solid-State NMR on a large multidomain integral membrane protein: the outer membrane protein assembly factor BamA. J Am Chem Soc 133(12):4175–4177. doi:10.1021/ja109469c

    Article  Google Scholar 

  • Riedel K, Leppert J, Ohlenschlager O, Gorlach M, Ramachandran R (2005) TEDOR with adiabatic inversion pulses: resonance assignments of C-13/N-15 labelled RNAs. J Biomol NMR 31(1):49–57. doi:10.1007/s10858-004-6066-x

    Article  Google Scholar 

  • Rienstra CM, Hohwy M, Hong M, Griffin RG (2000) 2D and 3D N-15-C-13-C-13 NMR chemical shift correlation spectroscopy of solids: assignment of MAS spectra of peptides. J Am Chem Soc 122(44):10979–10990. doi:10.1021/ja001092v

    Article  Google Scholar 

  • Schaefer J, McKay RA, Stejskal EO (1979) Double-cross-polarization nmr of solids. J Magn Reson 34(2):443–447. doi:10.1016/0022-2364(79)90022-2

    Google Scholar 

  • Schmidt HLF, Sperling LJ, Gao YG, Wylie BJ, Boettcher JM, Wilson SR, Rienstra CA (2007) Crystal polymorphism of protein GB1 examined by solid-state NMR spectroscopy and X-ray diffraction. J Phys Chem B 111(51):14362–14369. doi:10.1021/jp075531p

    Article  Google Scholar 

  • Sivanandam VN, Jayaraman M, Hoop CL, Kodali R, Wetzel R, van der Wel PCA (2011) The aggregation-enhancing Huntingtin N-terminus is helical in amyloid fibrils. J Am Chem Soc 133(12):4558–4566. doi:10.1021/ja110715f

    Article  Google Scholar 

  • Sivertsen AC, Bayro MJ, Belenky M, Griffin RG, Herzfeld J (2009) Solid-State NMR evidence for inequivalent GvpA subunits in gas vesicles. J Mol Biol 387(4):1032–1039. doi:10.1016/j.jmb.2009.02.015

    Article  Google Scholar 

  • Sivertsen AC, Bayro MJ, Belenky M, Griffin RG, Herzfeld J (2010) Solid-state NMR characterization of gas vesicle structure. Biophys J 99(6):1932–1939. doi:10.1016/j.bpj.2010.06.041

    Article  Google Scholar 

  • Sperling LJ, Berthold DA, Sasser TL, Jeisy-Scott V, Rienstra CM (2010) Assignment strategies for large proteins by magic-angle spinning NMR: the 21-kDa disulfide-bond-forming enzyme DsbA. J Mol Biol 399(2):268–282. doi:10.1016/j.jmb.2010.04.012

    Article  Google Scholar 

  • Sun BQ, Costa PR, Kocisko D, Lansbury PT, Griffin RG (1995) Internuclear distance measurements in solid-state nuclear-magnetic-resonance—dipolar recoupling via rotor synchronized spin locking. J Chem Phys 102(2):702–707. doi:10.1063/1.469182

    Article  ADS  Google Scholar 

  • Van Melckebeke H, Wasmer C, Lange A, Ab E, Loquet A, Bockmann A, Meier BH (2010) Atomic-resolution three-dimensional structure of HET-s(218–289) amyloid fibrils by solid-state NMR spectroscopy. J Am Chem Soc 132(39):13765–13775. doi:10.1021/ja104213J

    Article  Google Scholar 

  • Varga K, Tian L, McDermott AE (2007) Solid-state NMR study and assignments of the KcsA potassium ion channel of S. lividans. Biochim Biophys Acta-Prot Proteom 1774(12):1604–1613. doi:10.1016/j.bbapap.2007.08.029

  • Warschawski D (2011) Proteins of known structure determined by solid-State NMR. http://www.drorlist.com/nmr/SPNMR.html

  • Wasmer C, Lange A, Van Melckebeke H, Siemer AB, Riek R, Meier BH (2008) Amyloid fibrils of the HET-s(218–289) prion form a beta solenoid with a triangular hydrophobic core. Science 319(5869):1523–1526. doi:10.1126/science.1151839

    Article  ADS  Google Scholar 

  • Zhao X, Eden M, Levitt MH (2001) Recoupling of heteronuclear dipolar interactions in solid-state NMR using symmetry-based pulse sequences. Chem Phys Lett 342(3–4):353–361. doi:10.1016/s0009-2614(01)00593-0

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Marvin Bayro, Dr. Galia Debelouchina, Dr. Vladimir Michaelis, Dr. Christopher Turner and Dr. David Ruben for insightful discussions, Mr. Ajay Thakkar, Mr. Mike Mullins, and Dr. David Ruben for technical assistance, Lindsay Clark for preparing the GB1 sample, and Marina Belenky for preparing the gas vesicle sample. Research reported in this publication was supported by the National Institute of Biomedical Imaging and Bioengineering of the National Institutes of Health under awards EB001035, EB-001960 and EB-002926.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judith Herzfeld.

Additional information

The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Daviso, E., Eddy, M.T., Andreas, L.B. et al. Efficient resonance assignment of proteins in MAS NMR by simultaneous intra- and inter-residue 3D correlation spectroscopy. J Biomol NMR 55, 257–265 (2013). https://doi.org/10.1007/s10858-013-9707-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-013-9707-0

Keywords

Navigation