Journal of Biomolecular NMR

, Volume 55, Issue 3, pp 257–265 | Cite as

Efficient resonance assignment of proteins in MAS NMR by simultaneous intra- and inter-residue 3D correlation spectroscopy

  • Eugenio Daviso
  • Matthew T. Eddy
  • Loren B. Andreas
  • Robert G. Griffin
  • Judith Herzfeld


Resonance assignment is the first step in NMR structure determination. For magic angle spinning NMR, this is typically achieved with a set of heteronuclear correlation experiments (NCaCX, NCOCX, CONCa) that utilize SPECIFIC-CP 15N–13C transfers. However, the SPECIFIC-CP transfer efficiency is often compromised by molecular dynamics and probe performance. Here we show that one-bond ZF-TEDOR 15N–13C transfers provide simultaneous NCO and NCa correlations with at least as much sensitivity as SPECIFIC-CP for some non-crystalline samples. Furthermore, a 3D ZF-TEDOR-CC experiment provides heteronuclear sidechain correlations and robustness with respect to proton decoupling and radiofrequency power instabilities. We demonstrate transfer efficiencies and connectivities by application of 3D ZF-TEDOR-DARR to a model microcrystalline protein, GB1, and a less ideal system, GvpA in intact gas vesicles.


3D MAS NMR TEDOR DARR Sidechain-backbone correlation 



We thank Dr. Marvin Bayro, Dr. Galia Debelouchina, Dr. Vladimir Michaelis, Dr. Christopher Turner and Dr. David Ruben for insightful discussions, Mr. Ajay Thakkar, Mr. Mike Mullins, and Dr. David Ruben for technical assistance, Lindsay Clark for preparing the GB1 sample, and Marina Belenky for preparing the gas vesicle sample. Research reported in this publication was supported by the National Institute of Biomedical Imaging and Bioengineering of the National Institutes of Health under awards EB001035, EB-001960 and EB-002926.


  1. Ader C, Pongs O, Becker S, Baldus M (2010) Protein dynamics detected in a membrane-embedded potassium channel using two-dimensional solid-state NMR spectroscopy. Biochim Biophys Acta-Biomembranes 1798(2):286–290. doi: 10.1016/j.bbamem.2009.06.023 CrossRefGoogle Scholar
  2. Andreas LB, Eddy MT, Pielak RM, Chou J, Griffin RG (2010) Magic angle spinning NMR investigation of influenza A M2(18–60): support for an allosteric mechanism of inhibition. J Am Chem Soc 132(32):10958–10960. doi: 10.1021/ja101537p CrossRefGoogle Scholar
  3. Andreas LB, Eddy MT, Chou JJ, Griffin RG (2012) Magic-angle-spinning NMR of the drug resistant S31N M2 proton transporter from influenza A. J Am Chem Soc 134(17):7215–7218. doi: 10.1021/ja3003606 CrossRefGoogle Scholar
  4. Bajaj VS, van der Wel PCA, Griffin RG (2009) Observation of a low-temperature, dynamically driven structural transition in a polypeptide by solid-state NMR spectroscopy. J Am Chem Soc 131(1):118–128. doi: 10.1021/ja8045926 CrossRefGoogle Scholar
  5. Baldus M, Petkova AT, Herzfeld J, Griffin RG (1998) Cross polarization in the tilted frame: assignment and spectral simplification in heteronuclear spin systems. Mol Phys 95(6):1197–1207. doi: 10.1080/002689798166215 ADSCrossRefGoogle Scholar
  6. Bateman DA, Tycko R, Wickner RB (2011) Experimentally derived structural constraints for amyloid fibrils of wild-type transthyretin. Biophys J 101(10):2485–2492. doi: 10.1016/j.bpj.2011.10.009 CrossRefGoogle Scholar
  7. Bayro MJ, Maly T, Birkett NR, MacPhee CE, Dobson CM, Griffin RG (2010) High-resolution MAS NMR analysis of PI3-SH3 amyloid fibrils: backbone conformation and implications for protofilament assembly and structure. Biochemistry 49(35):7474–7484. doi: 10.1021/bi100864t CrossRefGoogle Scholar
  8. Bayro MJ, Debelouchina GT, Eddy MT, Birkett NR, MacPhee CE, Rosay M, Maas WE, Dobson CM, Griffin RG (2011) Intermolecular structure determination of amyloid fibrils with magic-angle spinning and dynamic nuclear polarization NMR. J Am Chem Soc 133(35):13967–13974. doi: 10.1021/ja203756x CrossRefGoogle Scholar
  9. Bayro MJ, Daviso E, Belenky M, Griffin RG, Herzfeld J (2012) An amyloid organelle, solid-state NMR evidence for cross-beta assembly of gas vesicles. J Biol Chem 287(5):3479–3484. doi: 10.1074/jbc.M111.313049 CrossRefGoogle Scholar
  10. Bennett AE, Becerra LR, Griffin RG (1994) Frequency-selective heteronuclear recoupling in rotating solids. J Chem Phys 100(2):812–814. doi: 10.1063/1.466563 ADSCrossRefGoogle Scholar
  11. Bernstein FC, Koetzle TF, Williams GJB, Meyer EF, Brice MD, Rodgers JR, Kennard O, Shimanouchi T, Tasumi M (1977) Protein data bank—computer-based archival file for macromolecular structures. J Mol Biol 112(3):535–542. doi: 10.1016/s0022-2836(77)80200-3 CrossRefGoogle Scholar
  12. Bhate MP, Wylie BJ, Tian L, McDermott AE (2010) Conformational dynamics in the selectivity filter of KcsA in response to potassium ion concentration. J Mol Biol 401(2):155–166. doi: 10.1016/j.jmb.2010.06.031 CrossRefGoogle Scholar
  13. Bockmann A (2008) 3D protein structures by solid-state NMR spectroscopy: ready for high resolution. Angew Chem Int Ed 47(33):6110–6113. doi: 10.1002/anie.200801352 CrossRefGoogle Scholar
  14. Brinkmann A, Levitt MH (2001) Symmetry principles in the nuclear magnetic resonance of spinning solids: heteronuclear recoupling by generalized Hartmann-Hahn sequences. J Chem Phys 115(1):357–384. doi: 10.1063/1.1377031 ADSCrossRefGoogle Scholar
  15. Comellas G, Lemkau LR, Zhou DH, George JM, Rienstra CM (2012) Structural intermediates during alpha-synuclein fibrillogenesis on phospholipid vesicles. J Am Chem Soc 134(11):5090–5099. doi: 10.1021/ja209019s CrossRefGoogle Scholar
  16. Debelouchina GT, Platt GW, Bayro MJ, Radford SE, Griffin RG (2010a) Intermolecular alignment in beta(2)-microglobulin amyloid fibrils. J Am Chem Soc 132(48):17077–17079. doi: 10.1021/ja1079871 CrossRefGoogle Scholar
  17. Debelouchina GT, Platt GW, Bayro MJ, Radford SE, Griffin RG (2010b) Magic angle spinning NMR analysis of beta(2)-microglobulin amyloid fibrils in two distinct morphologies. J Am Chem Soc 132(30):10414–10423. doi: 10.1021/ja102775u CrossRefGoogle Scholar
  18. Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) Nmrpipe—a multidimensional spectral processing system based on unix pipes. J Biomol NMR 6(3):277–293. doi: 10.1007/bf00197809 CrossRefGoogle Scholar
  19. Eddy MT, Ong T-C, Clark L, Teijido O, van der Wel PCA, Garces R, Wagner G, Rostovtseva TK, Griffin RG (2012a) Lipid dynamics and protein-lipid interactions in 2D crystals formed with the beta-barrel integral membrane protein VDAC1. J Am Chem Soc 134(14):6375–6387. doi: 10.1021/ja300347v CrossRefGoogle Scholar
  20. Eddy MT, Ruben D, Griffin RG, Herzfeld J (2012b) Deterministic schedules for robust and reproducible non-uniform sampling in multidimensional NMR. J Magn Reson 214:296–301. doi: 10.1016/j.jmr.2011.12.002 ADSCrossRefGoogle Scholar
  21. Franks WT, Zhou DH, Wylie BJ, Money BG, Graesser DT, Frericks HL, Sahota G, Rienstra CM (2005) Magic-angle spinning solid-state NMR spectroscopy of the beta 1 immunoglobulin binding domain of protein G (GB1): N-15 and C-13 chemical shift assignments and conformational analysis. J Am Chem Soc 127(35):12291–12305. doi: 10.1021/ja044497e CrossRefGoogle Scholar
  22. Fu RQ, Smith SA, Bodenhausen G (1997) Recoupling of heteronuclear dipolar interactions in solid state magic-angle spinning NMR by simultaneous frequency and amplitude modulation. Chem Phys Lett 272(5–6):361–369. doi: 10.1016/s0009-2614(97)00537-x ADSCrossRefGoogle Scholar
  23. Gullion T, Schaefer J (1989) Rotational-echo double-resonance nmr. J Magn Reson 81(1):196–200. doi: 10.1016/0022-2364(89)90280-1 Google Scholar
  24. Hansen JO, Kehlet C, Bjerring M, Vosegaard T, Glaser SJ, Khaneja N, Nielsen NC (2007) Optimal control based design of composite dipolar recoupling experiments by analogy to single-spin inversion pulses. Chem Phys Lett 447(1–3):154–161. doi: 10.1016/j.cplett.2007.08.072 ADSCrossRefGoogle Scholar
  25. Helmus JJ, Nadaud PS, Hofer N, Jaroniec CP (2008) Determination of methyl C-13-N-15 dipolar couplings in peptides and proteins by three-dimensional and four-dimensional magic-angle spinning solid-state NMR spectroscopy. J Chem Phys 128 (5):052314/1–16. doi: 10.1063/1.2817638 Google Scholar
  26. Higman VA, Flinders J, Hiller M, Jehle S, Markovic S, Fiedler S, van Rossum B-J, Oschkinat H (2009) Assigning large proteins in the solid state: a MAS NMR resonance assignment strategy using selectively and extensively C-13-labelled proteins. J Biomol NMR 44(4):245–260. doi: 10.1007/s10858-009-9338-7 CrossRefGoogle Scholar
  27. Higman VA, Varga K, Aslimovska L, Judge PJ, Sperling LJ, Rienstra CM, Watts A (2011) The Conformation of bacteriorhodopsin loops in purple membranes resolved by solid-state MAS NMR spectroscopy. Angew Chem Int Ed 50(36):8432–8435. doi: 10.1002/anie.201100730 CrossRefGoogle Scholar
  28. Hing AW, Vega S, Schaefer J (1992) Transferred-echo double-resonance NMR. J Magn Reson 96(1):205–209. doi: 10.1016/0022-2364(92)90305-q Google Scholar
  29. Hu K-N, McGlinchey RP, Wickner RB, Tycko R (2011) Segmental polymorphism in a functional amyloid. Biophys J 101(9):2242–2250. doi: 10.1016/j.bpj.2011.09.051 CrossRefGoogle Scholar
  30. Jaroniec CP, MacPhee CE, Astrof NS, Dobson CM, Griffin RG (2002a) Molecular conformation of a peptide fragment of transthyretin in an amyloid fibril. Proc Natl Acad Sci USA 99(26):16748–16753. doi: 10.1073/pnas.252625999 ADSCrossRefGoogle Scholar
  31. Jaroniec CP, Filip C, Griffin RG (2002b) 3D TEDOR NMR experiments for the simultaneous measurement of multiple carbon-nitrogen distances in uniformly C-13, N-15-labeled solids. J Am Chem Soc 124(36):10728–10742. doi: 10.1021/ja026385y CrossRefGoogle Scholar
  32. Kehlet C, Bjerring M, Sivertsen AC, Kristensen T, Enghild JJ, Glaser SJ, Khaneja N, Nielsen NC (2007) Optimal control based NCO and NCA experiments for spectral assignment in biological solid-state NMR spectroscopy. J Magn Reson 188(2):216–230. doi: 10.1016/j.jmr.2007.06.011 ADSCrossRefGoogle Scholar
  33. Kryndushkin DS, Wickner RB, Tycko R (2011) The Core of Ure2p Prion fibrils is formed by the N-terminal segment in a parallel cross-beta structure: evidence from solid-state NMR. J Mol Biol 409(2):263–277. doi: 10.1016/j.jmb.2011.03.067 CrossRefGoogle Scholar
  34. Lemkau LR, Comellas G, Kloepper KD, Woods WS, George JM, Rienstra CM (2012) Mutant protein A30P alpha-synuclein adopts wild-type fibril structure, despite slower fibrillation kinetics. J Biol Chem 287(14):11526–11532. doi: 10.1074/jbc.M111.306902 CrossRefGoogle Scholar
  35. Lewandowski JR, De Paepe G, Griffin RG (2007) Proton assisted insensitive nuclei cross polarization. J Am Chem Soc 129(4):728–729. doi: 10.1021/ja0650394 CrossRefGoogle Scholar
  36. Li Y, Berthold DA, Gennis RB, Rienstra CM (2008) Chemical shift assignment of the transmembrane helices of DsbB, a 20-kDa integral membrane enzyme, by 3D magic-angle spinning NMR spectroscopy. Protein Sci 17(2):199–204. doi: 10.1110/ps.073225008 CrossRefGoogle Scholar
  37. Li J, Hoop CL, Kodali R, Sivanandam VN, van der Wel PCA (2011) Amyloid-like fibrils from a domain-swapping protein feature a parallel, in-register conformation without native-like interactions. J Biol Chem 286(33):28988–28995. doi: 10.1074/jbc.M111.261750 CrossRefGoogle Scholar
  38. Long JR, Sun BQ, Bowen A, Griffin RG (1994) Molecular dynamics and magic-angle-spinning NMR. J Am Chem Soc 116(26):11950–11956. doi: 10.1021/ja00105a039 CrossRefGoogle Scholar
  39. Lv G, Kumar A, Giller K, Orcellet ML, Riedel D, Fernandez CO, Becker S, Lange A (2012) Structural comparison of mouse and human alpha-synuclein amyloid fibrils by solid-state NMR. J Mol Biol 420(1–2):99–111. doi: 10.1016/j.jmb.2012.04.009 CrossRefGoogle Scholar
  40. Matsuki Y, Eddy MT, Herzfeld J (2009) Spectroscopy by integration of frequency and time domain information for fast acquisition of high-resolution dark spectra. J Am Chem Soc 131(13):4648–4656. doi: 10.1021/ja807893k CrossRefGoogle Scholar
  41. Matsuki Y, Eddy MT, Griffin RG, Herzfeld J (2010) Rapid three-dimensional MAS NMR spectroscopy at critical sensitivity. Angew Chem Int Ed 49(48):9215–9218. doi: 10.1002/anie.201003329 CrossRefGoogle Scholar
  42. Maus DC, Copie V, Sun BQ, Griffiths JM, Griffin RG, Luo SF, Schrock RR, Liu AH, Seidel SW, Davis WM, Grohmann A (1996) A solid-state NMR study of tungsten methyl group dynamics in W(eta(5)-C(5)Me(5))Me(4) PF6. J Am Chem Soc 118(24):5665–5671. doi: 10.1021/ja960248h CrossRefGoogle Scholar
  43. Morcombe CR, Zilm KW (2003) Chemical shift referencing in MAS solid state NMR. J Magn Reson 162(2):479–486. doi: 10.1016/s1090-7807(03)00082-x ADSCrossRefGoogle Scholar
  44. Nieuwkoop AJ, Rienstra CM (2010) Supramolecular protein structure determination by site-specific long-range intermolecular solid state NMR Spectroscopy. J Am Chem Soc 132(22):7570–7571. doi: 10.1021/ja100992y CrossRefGoogle Scholar
  45. Paravastu AK, Leapman RD, Yau W-M, Tycko R (2008) Molecular structural basis for polymorphism in Alzheimer’s beta-amyloid fibrils. Proc Natl Acad Sci USA 105(47):18349–18354. doi: 10.1073/pnas.0806270105 ADSCrossRefGoogle Scholar
  46. Paravastu AK, Qahwash I, Leapman RD, Meredith SC, Tycko R (2009) Seeded growth of beta-amyloid fibrils from Alzheimer’s brain-derived fibrils produces a distinct fibril structure. Proc Natl Acad Sci USA 106(18):7443–7448. doi: 10.1073/pnas.0812033106 ADSCrossRefGoogle Scholar
  47. Qiang W, Yau W-M, Luo Y, Mattson MP, Tycko R (2012) Antiparallel beta-sheet architecture in Iowa-mutant beta-amyloid fibrils. Proc Natl Acad Sci USA 109(12):4443–4448. doi: 10.1073/pnas.1111305109 ADSCrossRefGoogle Scholar
  48. Renault M, Bos MP, Tommassen J, Baldus M (2011) Solid-State NMR on a large multidomain integral membrane protein: the outer membrane protein assembly factor BamA. J Am Chem Soc 133(12):4175–4177. doi: 10.1021/ja109469c CrossRefGoogle Scholar
  49. Riedel K, Leppert J, Ohlenschlager O, Gorlach M, Ramachandran R (2005) TEDOR with adiabatic inversion pulses: resonance assignments of C-13/N-15 labelled RNAs. J Biomol NMR 31(1):49–57. doi: 10.1007/s10858-004-6066-x CrossRefGoogle Scholar
  50. Rienstra CM, Hohwy M, Hong M, Griffin RG (2000) 2D and 3D N-15-C-13-C-13 NMR chemical shift correlation spectroscopy of solids: assignment of MAS spectra of peptides. J Am Chem Soc 122(44):10979–10990. doi: 10.1021/ja001092v CrossRefGoogle Scholar
  51. Schaefer J, McKay RA, Stejskal EO (1979) Double-cross-polarization nmr of solids. J Magn Reson 34(2):443–447. doi: 10.1016/0022-2364(79)90022-2 Google Scholar
  52. Schmidt HLF, Sperling LJ, Gao YG, Wylie BJ, Boettcher JM, Wilson SR, Rienstra CA (2007) Crystal polymorphism of protein GB1 examined by solid-state NMR spectroscopy and X-ray diffraction. J Phys Chem B 111(51):14362–14369. doi: 10.1021/jp075531p CrossRefGoogle Scholar
  53. Sivanandam VN, Jayaraman M, Hoop CL, Kodali R, Wetzel R, van der Wel PCA (2011) The aggregation-enhancing Huntingtin N-terminus is helical in amyloid fibrils. J Am Chem Soc 133(12):4558–4566. doi: 10.1021/ja110715f CrossRefGoogle Scholar
  54. Sivertsen AC, Bayro MJ, Belenky M, Griffin RG, Herzfeld J (2009) Solid-State NMR evidence for inequivalent GvpA subunits in gas vesicles. J Mol Biol 387(4):1032–1039. doi: 10.1016/j.jmb.2009.02.015 CrossRefGoogle Scholar
  55. Sivertsen AC, Bayro MJ, Belenky M, Griffin RG, Herzfeld J (2010) Solid-state NMR characterization of gas vesicle structure. Biophys J 99(6):1932–1939. doi: 10.1016/j.bpj.2010.06.041 CrossRefGoogle Scholar
  56. Sperling LJ, Berthold DA, Sasser TL, Jeisy-Scott V, Rienstra CM (2010) Assignment strategies for large proteins by magic-angle spinning NMR: the 21-kDa disulfide-bond-forming enzyme DsbA. J Mol Biol 399(2):268–282. doi: 10.1016/j.jmb.2010.04.012 CrossRefGoogle Scholar
  57. Sun BQ, Costa PR, Kocisko D, Lansbury PT, Griffin RG (1995) Internuclear distance measurements in solid-state nuclear-magnetic-resonance—dipolar recoupling via rotor synchronized spin locking. J Chem Phys 102(2):702–707. doi: 10.1063/1.469182 ADSCrossRefGoogle Scholar
  58. Van Melckebeke H, Wasmer C, Lange A, Ab E, Loquet A, Bockmann A, Meier BH (2010) Atomic-resolution three-dimensional structure of HET-s(218–289) amyloid fibrils by solid-state NMR spectroscopy. J Am Chem Soc 132(39):13765–13775. doi: 10.1021/ja104213J CrossRefGoogle Scholar
  59. Varga K, Tian L, McDermott AE (2007) Solid-state NMR study and assignments of the KcsA potassium ion channel of S. lividans. Biochim Biophys Acta-Prot Proteom 1774(12):1604–1613. doi: 10.1016/j.bbapap.2007.08.029
  60. Warschawski D (2011) Proteins of known structure determined by solid-State NMR.
  61. Wasmer C, Lange A, Van Melckebeke H, Siemer AB, Riek R, Meier BH (2008) Amyloid fibrils of the HET-s(218–289) prion form a beta solenoid with a triangular hydrophobic core. Science 319(5869):1523–1526. doi: 10.1126/science.1151839 ADSCrossRefGoogle Scholar
  62. Zhao X, Eden M, Levitt MH (2001) Recoupling of heteronuclear dipolar interactions in solid-state NMR using symmetry-based pulse sequences. Chem Phys Lett 342(3–4):353–361. doi: 10.1016/s0009-2614(01)00593-0 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Eugenio Daviso
    • 1
    • 2
  • Matthew T. Eddy
    • 2
  • Loren B. Andreas
    • 2
  • Robert G. Griffin
    • 2
  • Judith Herzfeld
    • 1
  1. 1.Department of ChemistryBrandeis UniversityWalthamUSA
  2. 2.Francis Bitter Magnet Laboratory and Department of ChemistryMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations