Advertisement

Journal of Biomolecular NMR

, Volume 55, Issue 3, pp 231–237 | Cite as

Improving the chemical shift dispersion of multidimensional NMR spectra of intrinsically disordered proteins

  • Wolfgang Bermel
  • Marta Bruix
  • Isabella C. Felli
  • Vasantha Kumar M. V.
  • Roberta Pierattelli
  • Soraya Serrano
Article

Abstract

Intrinsically disordered proteins (IDPs) have recently attracted the attention of the scientific community challenging the well accepted structure–function paradigm. In the characterization of the dynamic features of proteins nuclear magnetic resonance spectroscopy (NMR) is a strategic tool of investigation. However the peculiar properties of IDPs, with the lack of a unique 3D structure and their high flexibility, have a strong impact on NMR observables (low chemical shift dispersion, efficient solvent exchange broadening) and thus on the quality of NMR spectra. Key aspects to be considered in the design of new NMR experiments optimized for the study of IDPs are discussed. A new experiment, based on direct detection of 13Cα, is proposed.

Keywords

Intrinsically disordered proteins IDP NMR Chemical shift 13C NMR 13C direct detection Secondary structure 

Notes

Acknowledgments

This work has been supported in part by the Joint Research Activity and Access to Research Infrastructures (Bio–NMR, contract 261863) and by the Marie Curie ITN programs (IDPbyNMR, contract 264257) in the EC 7th Framework. S·S. acknowledges financial support for a short stay fellowship associated to Project CTQ2008–0080 from the Spanish Ministerio de Economía y Competitividad.

References

  1. Bermel W, Bertini I, Duma L, Emsley L, Felli IC, Pierattelli R, Vasos PR (2005a) Complete assignment of heteronuclear protein resonances by protonless NMR spectroscopy. Angew Chem Int Ed 44:3089–3092CrossRefGoogle Scholar
  2. Bermel W, Bertini I, Felli IC, Pierattelli R, Vasos PR (2005b) A selective experiment for the sequential protein backbone assignment from 3D heteronuclear spectra. J Magn Reson 172:324–328ADSCrossRefGoogle Scholar
  3. Bermel W, Bertini I, Felli IC, Lee Y-M, Luchinat C, Pierattelli R (2006a) Protonless NMR experiments for sequence-specific assignment of backbone nuclei in unfolded proteins. J Am Chem Soc 128:3918–3919CrossRefGoogle Scholar
  4. Bermel W, Bertini I, Felli IC, Piccioli M, Pierattelli R (2006b) 13C-detected protonless NMR spectroscopy of proteins in solution. Progr NMR Spectrosc 48:25–45CrossRefGoogle Scholar
  5. Bermel W, Felli IC, Matzapetakis M, Pierattelli R, Theil EC, Turano P (2007) A method for Cα direct-detection in protonless NMR. J Magn Reson 188:301–310ADSCrossRefGoogle Scholar
  6. Bermel W, Felli IC, Kümmerle R, Pierattelli R (2008) 13C direct-detection biomolecular NMR. Concepts Magn Reson 32A:183–200CrossRefGoogle Scholar
  7. Bermel W, Bertini I, Csizmok V, Felli IC, Pierattelli R, Tompa P (2009a) H-start for exclusively heteronuclear NMR spectroscopy: the case of intrinsically disordered proteins. J Magn Reson 198:275–281ADSCrossRefGoogle Scholar
  8. Bermel W, Bertini I, Felli IC, Pierattelli R (2009b) Speeding up 13C direct detection NMR experiments. J Am Chem Soc 131:15339–15345CrossRefGoogle Scholar
  9. Bermel W, Bertini I, Chill JH, Felli IC, Kumar VMV, Haba N, Pierattelli R (2012a) Aminoacid-types selective 13C direct-detected exclusively heteronuclear experiments to study intrinsically disordered proteins. Chem Bio Chem 13:2425–2432CrossRefGoogle Scholar
  10. Bermel W, Bertini I, Gonnelli L, Felli IC, Kozminski W, Piai A, Pierattelli R, Stanek J (2012b) Speeding up sequence specific assignment of IDPs. J Biomol NMR 53:293–301CrossRefGoogle Scholar
  11. Bertini I, Duma L, Felli IC, Fey M, Luchinat C, Pierattelli R, Vasos PR (2004) A heteronuclear direct detection NMR experiment for protein backbone assignment. Angew Chem Int Ed 43:2257–2259CrossRefGoogle Scholar
  12. Bertini I, Felli IC, Gonnelli L, Kumar VMV, Pierattelli R (2011) High-resolution characterization of intrinsic disorder in proteins: expanding the suite of 13C detected NMR experiments to determine key observables. ChemBioChem 12:2347–2352CrossRefGoogle Scholar
  13. Boehlen J-M, Bodenhausen G (1993) Experimental aspects of chirp NMR spectroscopy. J Magn Reson Ser A 102:293–301CrossRefGoogle Scholar
  14. Clark PJ, Evans FC (1954) Distance to nearest neighbor as a measure of spatial relationships in populations. Ecology 35:445–453CrossRefGoogle Scholar
  15. De Simone A, Cavalli A, Hsu ST, Vranken W, Vendruscolo M (2009) Accurate random coil chemical shifts from an analysis of loop regions in native states of loop regions in native states of proteins. J Am Chem Soc 131:16332–16333CrossRefGoogle Scholar
  16. Duma L, Hediger S, Lesage A, Emsley L (2003) Spin-state selection in solid-state NMR. J Magn Reson 164:187–195ADSCrossRefGoogle Scholar
  17. Dunker AK, Silman I, Uversky VN, Sussman JL (2008) Function and structure of inherently disordered proteins. Curr Opin Struct Biol 18:756–764CrossRefGoogle Scholar
  18. Dyson HJ, Wright PE (2001) Nuclear magnetic resonance methods for the elucidation of structure and dynamics in disordered states. Methods Enzymol 339:258–271CrossRefGoogle Scholar
  19. Dyson HJ, Wright PE (2004) Unfolded proteins and protein folding studied by NMR. Chem Rev 104:3607–3622CrossRefGoogle Scholar
  20. Dyson HJ, Wright PE (2005) Intrinsically unstructured proteins and their functions. Nat Rev Mol Cell Biol 6:197–208CrossRefGoogle Scholar
  21. Eletsky A, Moreira O, Kovacs H, Pervushin K (2003) A novel strategy for the assignment of side-chain resonances in completely deuterated large proteins using 13C spectroscopy. J Biomol NMR 26:167–179CrossRefGoogle Scholar
  22. Eliezer D (2009) Biophysical characterization of intrinsically disordered proteins. Curr Opin Struct Biol 19:23–30CrossRefGoogle Scholar
  23. Emsley L, Bodenhausen G (1992) Optimization of shaped selective pulses for NMR using a quaternion description of their overall propagators. J Magn Reson 97:135–148Google Scholar
  24. Felli IC, Pierattelli R (2012a) 13C direct detection NMR. In: McGreevy KS, Parigi G, Bertini I (eds) NMR of biomolecules. Wiley, Newyork, pp 433–442Google Scholar
  25. Felli IC, Pierattelli R (2012b) Recent progress in NMR spectroscopy: toward the study of intrinsically disordered proteins of increasing size and complexity. IUBMB Life 64:473–481CrossRefGoogle Scholar
  26. Felli IC, Pierattelli R and Tompa P (2012) Intrinsically disordered proteins. In: Bertini I, McGreevy KS, Parigi G (eds) Wiley, Newyork, 137-152Google Scholar
  27. Garner E, Cannon P, Romero P, Obradovic Z, Dunker AK (1998) Predicting disordered regions from aminoacid sequence: common themes despite differing structural characterization. Genome Inform 9:201–213Google Scholar
  28. Hennig M, Bermel W, Spencer A, Dobson CM, Smith LJ, Schwalbe H (1999) Side-chain conformations in an unfolded protein: χ1 distributions in denaturated hen lysozyme determined by heteronuclear 13C, 15N NMR spectroscopy. J Mol Biol 288:705–723CrossRefGoogle Scholar
  29. Hsu ST, Bertoncini CW, Dobson CM (2009) Use of protonless NMR spectroscopy to alleviate the loss of information resulting from exchange to broadening. J Am Chem Soc 131:7222–7223CrossRefGoogle Scholar
  30. Kjaergaard M, Poulsen FM (2011) Sequence correction of random coil chemical shifts: correlation between neighbor correction factors and changes in the Ramachandran distribution. J Biomol NMR 50:157–165CrossRefGoogle Scholar
  31. Kjaergaard M, Poulsen FM (2012) Disordered proteins studied by chemical shifts. Prog NMR Spectrosc 60:42–51CrossRefGoogle Scholar
  32. Marsh JA, Singh VK, Jia Z, Forman-Kay JD (2006) Sensitivity of secondary structural propensities to sequence differences between α-and γ-synuclein: implications for fibrillation. Protein Sci 15:2795–2804CrossRefGoogle Scholar
  33. Marsh JA, Dancheck B, Ragusa MJ, Allaire M, Forman-Kay JD, Peti W (2010) Structural diversity in free and bound states of intrinsically disordered protein phosphatase 1 regulators. Structure 18:1094–1103CrossRefGoogle Scholar
  34. Mittag T, Forman-Kay J (2007) Atomic-level characterization of disordered protein ensembles. Curr Opin Struct Biol 17:3–14CrossRefGoogle Scholar
  35. Motackova V, Novacek J, Zawadzka-Kazimierczuk A, Kazimierczuk K, Zidek L, Sanderová H, Krasny L, Kozminski W, Sklenar V (2010) Strategy for complete NMR assignment of disordered proteins with highly repetitive sequences based on resolution-enhanced 5D experiments. J Biomol NMR 48:169–177CrossRefGoogle Scholar
  36. Mukrasch MD, Bibow S, Korukottu J, Jeganathan S, Biernat J, Griesinger C, Mendelkow E, Zweckstetter M (2009) Structural polimorphism of 441-residue tau at single residue resolution. PLoS Biol 7:e34CrossRefGoogle Scholar
  37. Novacek J, Zawadzka-Kazimierczuk A, Papoušková V, Zidek L, Sanderová H, Krasny L, Kozminski W, Sklenar V (2011) 5D 13C-detected experiments for backbone assignment of unstructured proteins with a very low signal dispersion. J Biomol NMR 50:1–11CrossRefGoogle Scholar
  38. Novacek J, Haba NY, Chill JH, Zidek L, Sklenar V (2012) 4D Non-uniformly sampled HCBCACON and (1) J[NC (α)]-selective HCBCANCO experiments for the sequential assignment and chemical shift analysis of intrinsically disordered proteins. J Biomol NMR 53:139–148CrossRefGoogle Scholar
  39. O’Hare B, Benesi AJ, Showalter SA (2009) Incorporating 1H chemical shift determination into 13C-direct detected spectroscopy of intrinsically disordered proteins in solution. J Magn Reson 200:354–358ADSCrossRefGoogle Scholar
  40. Pérez Y, Gairi M, Pons M, Bernadó P (2009) Structural characterization of the natively unfolded N-terminal domain of human c-Src kinase: insights into the role of phosphorylation of the unique domain. J Mol Biol 391:136–148CrossRefGoogle Scholar
  41. Richter C, Kovacs H, Buck J, Wacker A, Fuertig B, Bermel W, Schwalbe H (2010) 13C-direct detected NMR experiments for the sequential J-based resonance assignment of RNA oligonucleotides. J Biomol NMR 47:259–269CrossRefGoogle Scholar
  42. Romero P, Obradovic Z, Kissinger CR, Villafranca JE, Garner E, Guillot S, Dunker AK (1998) Thousands of proteins likely to have long disordered regions. Pac Symp Biocomputing 3:437–448Google Scholar
  43. Schwalbe H, Fiebig KM, Buck M, Jones JA, Grimshaw SB, Spencer A, Glaser SJ, Smith LJ, Dobson CM (1997) Structural and dynamical properties of a denatured protein. Heteronuclear 3D NMR experiments and theoretical simulations of lysozyme in 8 M urea. Biochem 36:8977–8991CrossRefGoogle Scholar
  44. Schwarzinger S, Kroon GJA, Foss TR, Chung J, Wright PE, Dyson HJ (2001) Sequence-dependent correction of random coil NMR chemical shifts. J Am Chem Soc 123:2970–2978CrossRefGoogle Scholar
  45. Serber Z, Richter C, Moskau D, Boehlen J-M, Gerfin T, Marek D, Haeberli M, Baselgia L, Laukien F, Stern AS, Hoch JC, Dötsch V (2000) New carbon-detected protein NMR experiments using cryoprobes. J Am Chem Soc 122:3554–3555CrossRefGoogle Scholar
  46. Serber Z, Richter C, Dötsch V (2001) Carbon-detected NMR experiments to investigate structure and dynamics of biological macromolecules. ChemBioChem 2:247–251CrossRefGoogle Scholar
  47. Shaka AJ, Keeler J, Freeman R (1983) Evaluation of a new broadband decoupling sequence: WALTZ-16. J Magn Reson 53:313–340Google Scholar
  48. Shaka AJ, Barker PB, Freeman R (1985) Computer-optimized decoupling scheme for wideband applications and low-level operation. J Magn Reson 64:547–552Google Scholar
  49. Sickmeier M, Hamilton JA, LeGall T, Vacic V, Cortese MS, Tantos A, Szabo B, Tompa P, Chen J, Uversky VN, Obradovic Z, Dunker AK (2007) DisProt: the database of disordered proteins. Nucleic Acids Res 35:D786–D793CrossRefGoogle Scholar
  50. Takeuchi K, Sun ZN, Wagner G (2008) Alternate 13C–12C labeling for complete main-chain resonance assignments using Cα direct-detection with applicability toward fast relaxing protein systems. J Am Chem Soc 130:17210–17211CrossRefGoogle Scholar
  51. Takeuchi K, Frueh DP, Hyberts SG, Sun ZYJ, Wagner G (2010a) High-resolution 3D CANCA NMR experiments for complete main chain assignments using Cα direct detection. J Am Chem Soc 132:2945–2951CrossRefGoogle Scholar
  52. Takeuchi K, Frueh DP, Sun ZYJ, Hiller S, Wagner G (2010b) CACA-TOCSY with alternate 13C–12C labeling: a 13Cα direct detection experiment for main chain resonance assignment, dihedral angle information and aminoacid type identification. J Biomol NMR 47:55–63CrossRefGoogle Scholar
  53. Tamiola K, Mulder FA (2012) Using NMR chemical shifts to calculate the propensity for structural order and disorder in proteins. Biochem Soc Trans 10:1014–1020CrossRefGoogle Scholar
  54. Tamiola K, Acar B, Mulder FAA (2010) Sequence-specific random coil chemical shifts of intrinsically disordered proteins. J Am Chem Soc 132:18000–18003CrossRefGoogle Scholar
  55. Tompa P (2002) Intrinsically unstructured proteins. Trends Biochem Sci 27:527–533CrossRefGoogle Scholar
  56. Tompa P (2009) Structure and function of intrinsically disordered proteins. Taylor and Francis Group, Boca Raton, FLGoogle Scholar
  57. Tompa P (2012) Intrinsically disordered proteins: a 10-year recap. Trends Biochem SciGoogle Scholar
  58. Vögeli B, Kovacs H, Pervushin K (2004) Measurements of side chain 13C–13C residual dipolar coupling in uniformly deuterated proteins. J Am Chem Soc 126:2414–2420CrossRefGoogle Scholar
  59. Vögeli B, Kovacs H, Pervushin K (2005) Simultaneous 1H- or 2H-, 15N- and multiple-band-selective 13C-decoupling during acquisition in 13C-detected experiments with proteins and oligonucleotides. J Biomol NMR 31:1–9CrossRefGoogle Scholar
  60. Wishart DS, Bigam CG, Holm A, Hodges RS, Sykes BD (1995) 1H, 13C and 15N random coil NMR chemical shifts of the common amino acids. I. Investigations of nearest-neighbor effects. J Biomol NMR 5:67–81CrossRefGoogle Scholar
  61. Wright PE, Dyson HJ (1999) Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm. J Mol Biol 293:321–331CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Wolfgang Bermel
    • 1
  • Marta Bruix
    • 2
  • Isabella C. Felli
    • 3
    • 4
  • Vasantha Kumar M. V.
    • 4
  • Roberta Pierattelli
    • 3
    • 4
  • Soraya Serrano
    • 2
  1. 1.Bruker BioSpin GmbHRheinstettenGermany
  2. 2.Instituto de Quimica Fisica ‘‘Rocasolano’’Consejo Superior de Investigaciones CientificasMadridSpain
  3. 3.Department of Chemistry “Ugo Shiff”University of FlorenceFlorenceItaly
  4. 4.Magnetic Resonance CenterUniversity of FlorenceFlorenceItaly

Personalised recommendations