Journal of Biomolecular NMR

, Volume 55, Issue 1, pp 11–17 | Cite as

Residue-specific membrane location of peptides and proteins using specifically and extensively deuterated lipids and 13C–2H rotational-echo double-resonance solid-state NMR

  • Li Xie
  • Ujjayini Ghosh
  • Scott D. Schmick
  • David P. Weliky


Residue-specific location of peptides in the hydrophobic core of membranes was examined using 13C–2H REDOR and samples in which the lipids were selectively deuterated. The transmembrane topology of the KALP peptide was validated with this approach with substantial dephasing observed for deuteration in the bilayer center and reduced or no dephasing for deuteration closer to the headgroups. Insertion of β sheet HIV and helical and β sheet influenza virus fusion peptides into the hydrophobic core of the membrane was validated in samples with extensively deuterated lipids.


REDOR Membrane location Deuterated lipid Solid-state NMR Peptide Protein 13C–2



The research was supported by NIH AI47153.


  1. Balbach JJ, Ishii Y, Antzutkin ON, Leapman RD, Rizzo NW, Dyda F, Reed J, Tycko R (2000) Amyloid fibril formation by Aβ16-22, a seven-residue fragment of the Alzheimer’s β-amyloid peptide, and structural characterization by solid state NMR. Biochemistry 39:13748–13759CrossRefGoogle Scholar
  2. Brugger B, Glass B, Haberkant P, Leibrecht I, Wieland FT, Krasslich HG (2006) The HIV lipidome: a raft with an unusual composition. Proc Natl Acad Sci USA 103:2641–2646ADSCrossRefGoogle Scholar
  3. Buffy JJ, Hong T, Yamaguchi S, Waring AJ, Lehrer RI, Hong M (2003) Solid-state NMR investigation of the depth of insertion of protegrin-1 in lipid bilayers using paramagnetic Mn2+. Biophys J 85:2363–2373CrossRefGoogle Scholar
  4. Cady SD, Schmidt-Rohr K, Wang J, Soto CS, DeGrado WF, Hong M (2010) Structure of the amantadine binding site of influenza M2 proton channels in lipid bilayers. Nature 463:689–693ADSCrossRefGoogle Scholar
  5. de Planque MRR, Goormaghtigh E, Greathouse DV, Koeppe RE, Kruijtzer JAW, Liskamp RMJ, de Kruijff B, Killian JA (2001) Sensitivity of single membrane-spanning alpha-helical peptides to hydrophobic mismatch with a lipid bilayer: effects on backbone structure, orientation, and extent of membrane incorporation. Biochemistry 40:5000–5010CrossRefGoogle Scholar
  6. Doherty T, Waring A, Hong M (2006) Membrane-bound conformation and topology of the antimicrobial peptide tachyplesin I by solid-state NMR. Biochemistry 45:13323–13330CrossRefGoogle Scholar
  7. Gallagher GJ, Hong M, Thompson LK (2004) Solid-state NMR spin diffusion for measurement of membrane-bound peptide structure: gramicidin A. Biochemistry 43:7899–7906CrossRefGoogle Scholar
  8. Gullion T (1998) Introduction to rotational-echo, double-resonance NMR. Concept Magn Reson 10:277–289CrossRefGoogle Scholar
  9. Gullion T (1999) A comparison between REDOR and θ-REDOR for measuring 13C–2D dipolar interactions in solids. J Magn Reson 139:402–407ADSCrossRefGoogle Scholar
  10. Gullion T, Kishore R, Asakura T (2003) Determining dihedral angles and local structure in silk peptide by 13C–2H REDOR. J Am Chem Soc 125:7510–7511CrossRefGoogle Scholar
  11. Han X, Tamm LK (2000) A host-guest system to study structure-function relationships of membrane fusion peptides. Proc Natl Acad Sci USA 97:13097–13102ADSCrossRefGoogle Scholar
  12. Hirsh DJ, Lazaro N, Wright LR, Boggs JM, McIntosh TJ, Schaefer J, Blazyk J (1998) A new monofluorinated phosphatidylcholine forms interdigitated bilayers. Biophys J 75:1858–1868CrossRefGoogle Scholar
  13. Huster D, Yao XL, Hong M (2002) Membrane protein topology probed by H-1 spin diffusion from lipids using solid-state NMR spectroscopy. J Am Chem Soc 124:874–883CrossRefGoogle Scholar
  14. Jaroniec CP, Tounge BA, Rienstra CM, Herzfeld J, Griffin RG (1999) Measurement of 13C–13–15 N distances in uniformly 13C labeled biomolecules: j-decoupled REDOR. J Am Chem Soc 121:10237–10238CrossRefGoogle Scholar
  15. Long HW, Tycko R (1998) Biopolymer conformational distributions from solid-state NMR: alpha-helix and 3(10)-helix contents of a helical peptide. J Am Chem Soc 120:7039–7048CrossRefGoogle Scholar
  16. McDermott A (2009) Structure and dynamics of membrane proteins by magic angle spinning solid-state NMR. Ann Rev Biophys 38:385–403MathSciNetCrossRefGoogle Scholar
  17. Pan JH, Lai CB, Scott WRP, Straus SK (2010) Synthetic fusion peptides of tick-borne encephalitis virus as models for membrane fusion. Biochemistry 49:287–296CrossRefGoogle Scholar
  18. Qiang W, Bodner ML, Weliky DP (2008) Solid-state NMR spectroscopy of human immunodeficiency virus fusion peptides associated with host-cell-like membranes: 2D correlation spectra and distance measurements support a fully extended conformation and models for specific antiparallel strand registries. J Am Chem Soc 130:5459–5471CrossRefGoogle Scholar
  19. Qiang W, Sun Y, Weliky DP (2009) A strong correlation between fusogenicity and membrane insertion depth of the HIV fusion peptide. Proc Natl Acad Sci USA 106:15314–15319ADSCrossRefGoogle Scholar
  20. Sack I, Balazs YS, Rahimipour S, Vega S (2000) Solid-state NMR determination of peptide torsion angles: applications of 2H-dephased REDOR. J Am Chem Soc 122:12263–12269CrossRefGoogle Scholar
  21. Schaefer J (1999) REDOR-determined distances from heterospins to clusters of 13C labels. J Magn Reson 137:272–275ADSCrossRefGoogle Scholar
  22. Schmidt A, McKay RA, Schaefer J (1992) Internuclear distance measurement between deuterium (I = 1) and a spin-1/2 nucleus in rotating solids. J Magn Reson 96:644–650Google Scholar
  23. Toke O, Maloy WL, Kim SJ, Blazyk J, Schaefer J (2004) Secondary structure and lipid contact of a peptide antibiotic in phospholipid bilayers by REDOR. Biophys J 87:662–674CrossRefGoogle Scholar
  24. Tristram-Nagle S, Nagle JF (2004) Lipid bilayers: thermodynamics, structure, fluctuations, and interactions. Chem Phys Lipids 127:3–14CrossRefGoogle Scholar
  25. White JM, Delos SE, Brecher M, Schornberg K (2008) Structures and mechanisms of viral membrane fusion proteins: multiple variations on a common theme. Crit Rev Biochem Mol Biol 43:189–219CrossRefGoogle Scholar
  26. Yang J, Gabrys CM, Weliky DP (2001) Solid-state nuclear magnetic resonance evidence for an extended beta strand conformation of the membrane-bound HIV-1 fusion peptide. Biochemistry 40:8126–8137CrossRefGoogle Scholar
  27. Yang J, Parkanzky PD, Bodner ML, Duskin CG, Weliky DP (2002) Application of REDOR subtraction for filtered MAS observation of labeled backbone carbons of membrane-bound fusion peptides. J Magn Reson 159:101–110ADSCrossRefGoogle Scholar
  28. Zhang HY, Neal S, Wishart DS (2003) RefDB: a database of uniformly referenced protein chemical shifts. J Biomol NMR 25:173–195CrossRefGoogle Scholar
  29. Zheng Z, Yang R, Bodner ML, Weliky DP (2006) Conformational flexibility and strand arrangements of the membrane-associated HIV fusion peptide trimer probed by solid-state NMR spectroscopy. Biochemistry 45:12960–12975CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Li Xie
    • 1
  • Ujjayini Ghosh
    • 1
  • Scott D. Schmick
    • 1
  • David P. Weliky
    • 1
  1. 1.Department of ChemistryMichigan State UniversityEast LansingUSA

Personalised recommendations