Skip to main content
Log in

Resolution-by-proxy: a simple measure for assessing and comparing the overall quality of NMR protein structures

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

In protein X-ray crystallography, resolution is often used as a good indicator of structural quality. Diffraction resolution of protein crystals correlates well with the number of X-ray observables that are used in structure generation and, therefore, with protein coordinate errors. In protein NMR, there is no parameter identical to X-ray resolution. Instead, resolution is often used as a synonym of NMR model quality. Resolution of NMR structures is often deduced from ensemble precision, torsion angle normality and number of distance restraints per residue. The lack of common techniques to assess the resolution of X-ray and NMR structures complicates the comparison of structures solved by these two methods. This problem is sometimes approached by calculating “equivalent resolution” from structure quality metrics. However, existing protocols do not offer a comprehensive assessment of protein structure as they calculate equivalent resolution from a relatively small number (<5) of protein parameters. Here, we report a development of a protocol that calculates equivalent resolution from 25 measurable protein features. This new method offers better performance (correlation coefficient of 0.92, mean absolute error of 0.28 Å) than existing predictors of equivalent resolution. Because the method uses coordinate data as a proxy for X-ray diffraction data, we call this measure “Resolution-by-Proxy” or ResProx. We demonstrate that ResProx can be used to identify under-restrained, poorly refined or inaccurate NMR structures, and can discover structural defects that the other equivalent resolution methods cannot detect. The ResProx web server is available at http://www.resprox.ca.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Andrec M, Snyder DA, Zhou Z, Young J, Montelione GT, Levy RM (2007) A large data set comparison of protein structures determined by crystallography and NMR: statistical test for structural differences and the effect of crystal packing. Proteins 69(3):449–465

    Article  Google Scholar 

  • Ban YE, Rudolph J, Zhou P, Edelsbrunner H (2006) Evaluating the quality of NMR structures by local density of protons. Proteins 62(4):852–864

    Article  Google Scholar 

  • Berjanskii M, Tang P, Liang J, Cruz JA, Zhou J, Zhou Y, Bassett E, MacDonell C, Lu P, Lin G, Wishart DS (2009) GeNMR: a web server for rapid NMR-based protein structure determination. Nucleic Acids Res 37(Web Server issue):W670–W677

    Article  Google Scholar 

  • Berjanskii M, Liang Y, Zhou J, Tang P, Stothard P, Zhou Y, Cruz J, MacDonell C, Lin G, Lu P, Wishart DS (2010) PROSESS: a protein structure evaluation suite and server. Nucleic Acids Res 38(Web Server issue):W633–W640

    Article  Google Scholar 

  • Bowers PM, Strauss CE, Baker D (2000) De novo protein structure determination using sparse NMR data. J Biomol NMR 18(4):311–318

    Article  Google Scholar 

  • Chen VB, Arendall WB 3rd, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, Murray LW, Richardson JS, Richardson DC (2010) MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D Biol Crystallogr 66(Pt 1):12–21

    Article  Google Scholar 

  • Clore GM, Garrett DS (1999) R-factor, Free R, and complete cross-validation for dipolar coupling refinement of NMR structures. J Am Chem Soc 121(39):9008–9012

    Article  Google Scholar 

  • Cornilescu G, Marquardt JL, Ottiger M, Bax A (1998) Validation of protein structure from anisotropic carbonyl chemical shifts in a dilute liquid crystalline phase. J Am Chem Soc 120(27):6836–6837

    Article  Google Scholar 

  • Davis IW, Leaver-Fay A, Chen VB, Block JN, Kapral GJ, Wang X, Murray LW, Arendall WB III, Snoeyink J, Richardson JS, Richardson DC (2007) MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res 35(Web Server issue):W375–W383

    Article  Google Scholar 

  • Eisenberg D, Luthy R, Bowie JU (1997) VERIFY3D: assessment of protein models with three-dimensional profiles. Methods Enzymol 277:396–404

    Article  Google Scholar 

  • Fan H, Mark AE (2003) Relative stability of protein structures determined by X-ray crystallography or NMR spectroscopy: a molecular dynamics simulation study. Proteins 53(1):111–120

    Article  Google Scholar 

  • Gronwald W, Kirchhofer R, Gorler A, Kremer W, Ganslmeier B, Neidig KP, Kalbitzer HR (2000) RFAC, a program for automated NMR R-factor estimation. J Biomol NMR 17(2):137–151

    Article  Google Scholar 

  • Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH (2009) The WEKA data mining software: an update. SIGKDD Explor Newsl 11(1):10–18

    Article  Google Scholar 

  • Han B, Liu Y, Ginzinger SW, Wishart DS (2011) SHIFTX2: significantly improved protein chemical shift prediction. J Biomol NMR 50(1):43–57

    Article  Google Scholar 

  • Hooft RW, Vriend G, Sander C, Abola EE (1996) Errors in protein structures. Nature 381(6580):272

    Article  ADS  Google Scholar 

  • Huang YJ, Powers R, Montelione GT (2005) Protein NMR recall, precision, and F-measure scores (RPF scores): structure quality assessment measures based on information retrieval statistics. J Am Chem Soc 127(6):1665–1674

    Article  Google Scholar 

  • Koradi R, Billeter M, Wuthrich K (1996) MOLMOL: a program for display and analysis of macromolecular structures. J Mol Graph 14(1):51–55, 29–32

    Google Scholar 

  • Kwan AH, Mobli M, Gooley PR, King GF, Mackay JP (2011) Macromolecular NMR spectroscopy for the non-spectroscopist. FEBS J 278(5):687–703

    Article  Google Scholar 

  • Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26(2):283–291

    Article  Google Scholar 

  • Laskowski RA, Rullmannn JA, MacArthur MW, Kaptein R, Thornton JM (1996) AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J Biomol NMR 8(4):477–486

    Article  Google Scholar 

  • Lindorff-Larsen K, Best RB, Depristo MA, Dobson CM, Vendruscolo M (2005) Simultaneous determination of protein structure and dynamics. Nature 433(7022):128–132

    Article  ADS  Google Scholar 

  • Linge JP, Nilges M (1999) Influence of non-bonded parameters on the quality of NMR structures: a new force field for NMR structure calculation. J Biomol NMR 13(1):51–59

    Article  Google Scholar 

  • Linge JP, Williams MA, Spronk CA, Bonvin AM, Nilges M (2003) Refinement of protein structures in explicit solvent. Proteins 50(3):496–506

    Article  Google Scholar 

  • Minor DL Jr (2007) The neurobiologist’s guide to structural biology: a primer on why macromolecular structure matters and how to evaluate structural data. Neuron 54(4):511–533

    Article  Google Scholar 

  • Mitchell TM (1997) Machine learning. McGraw-Hill, New York

    MATH  Google Scholar 

  • Nabuurs SB, Nederveen AJ, Vranken W, Doreleijers JF, Bonvin AM, Vuister GW, Vriend G, Spronk CA (2004) DRESS: a database of REfined solution NMR structures. Proteins 55(3):483–486

    Article  Google Scholar 

  • Nabuurs SB, Krieger E, Spronk CA, Nederveen AJ, Vriend G, Vuister GW (2005) Definition of a new information-based per-residue quality parameter. J Biomol NMR 33(2):123–134

    Article  Google Scholar 

  • Nabuurs SB, Spronk CA, Vuister GW, Vriend G (2006) Traditional biomolecular structure determination by NMR spectroscopy allows for major errors. PLoS Comput Biol 2(2):e9

    Article  ADS  Google Scholar 

  • Neal S, Nip AM, Zhang H, Wishart DS (2003) Rapid and accurate calculation of protein 1H, 13C and 15 N chemical shifts. J Biomol NMR 26(3):215–240

    Article  Google Scholar 

  • Pontius J, Richelle J, Wodak SJ (1996) Deviations from standard atomic volumes as a quality measure for protein crystal structures. J Mol Biol 264(1):121–136

    Article  Google Scholar 

  • Raman S, Huang YJ, Mao B, Rossi P, Aramini JM, Liu G, Montelione GT, Baker D (2010) Accurate automated protein NMR structure determination using unassigned NOESY data. J Am Chem Soc 132(1):202–207

    Article  Google Scholar 

  • Ramelot TA, Raman S, Kuzin AP, Xiao R, Ma LC, Acton TB, Hunt JF, Montelione GT, Baker D, Kennedy MA (2009) Improving NMR protein structure quality by Rosetta refinement: a molecular replacement study. Proteins 75(1):147–167

    Article  Google Scholar 

  • Richards FM (1977) Areas, volumes, packing and protein structure. Annu Rev Biophys Bioeng 6:151–176

    Article  Google Scholar 

  • Schwieters CD, Kuszewski JJ, Tjandra N, Clore GM (2003) The Xplor-NIH NMR molecular structure determination package. J Magn Reson 160(1):65–73

    Article  ADS  Google Scholar 

  • Seeliger D, de Groot BL (2007) Atomic contacts in protein structures. A detailed analysis of atomic radii, packing, and overlaps. Proteins 68(3):595–601

    Article  Google Scholar 

  • Sheffler W, Baker D (2009) RosettaHoles: rapid assessment of protein core packing for structure prediction, refinement, design, and validation. Protein Sci 18(1):229–239

    Google Scholar 

  • Sheffler W, Baker D (2010) RosettaHoles2: a volumetric packing measure for protein structure refinement and validation. Protein Sci 19(10):1991–1995

    Article  Google Scholar 

  • Shen Y, Vernon R, Baker D, Bax A (2009) De novo protein structure generation from incomplete chemical shift assignments. J Biomol NMR 43(2):63–78

    Article  Google Scholar 

  • Shevade SK, Keerthi SS, Bhattacharyya C, Murthy KK (2000) Improvements to the SMO algorithm for SVM regression. IEEE Trans Neural Netw 11(5):1188–1193

    Article  Google Scholar 

  • Sippl MJ (1993) Recognition of errors in three-dimensional structures of proteins. Proteins 17(4):355–362

    Article  Google Scholar 

  • Spronk CA, Linge JP, Hilbers CW, Vuister GW (2002) Improving the quality of protein structures derived by NMR spectroscopy. J Biomol NMR 22(3):281–289

    Article  Google Scholar 

  • Spronk CA, Nabuurs SB, Krieger E, Vriend G, Vuister GW (2004) Validation of protein structures derived by NMR spectroscopy. Prog Nucl Magn Reson Spectrosc 45(3):315–337

    Article  Google Scholar 

  • Vasilief I (2011) QtiPlot—data analysis and scientific visualisation. http://soft.proindependent.com/qtiplot.html, 0.9.8.4 edn

  • Vriend G (1990) WHAT IF: a molecular modeling and drug design program. J Mol Graph 8(1):52–56

    Article  Google Scholar 

  • Wiederstein M, Sippl MJ (2007) ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 35(Web Server issue):W407–W410

    Article  Google Scholar 

  • Willard L, Ranjan A, Zhang H, Monzavi H, Boyko RF, Sykes BD, Wishart DS (2003) VADAR: a web server for quantitative evaluation of protein structure quality. Nucleic Acids Res 31(13):3316–3319

    Article  Google Scholar 

  • Wishart DS (2011) Interpreting protein chemical shift data. Prog Nucl Magn Reson Spectrosc 58(1):62–87

    Article  Google Scholar 

  • Wlodawer A, Minor W, Dauter Z, Jaskolski M (2008) Protein crystallography for non-crystallographers, or how to get the best (but not more) from published macromolecular structures. FEBS J 275(1):1–21

    Article  Google Scholar 

  • Word JM, Lovell SC, Richardson JS, Richardson DC (1999) Asparagine and glutamine: using hydrogen atom contacts in the choice of side-chain amide orientation. J Mol Biol 285(4):1735–1747

    Article  Google Scholar 

  • Xia B, Tsui V, Case DA, Dyson HJ, Wright PE (2002) Comparison of protein solution structures refined by molecular dynamics simulation in vacuum, with a generalized Born model, and with explicit water. J Biomol NMR 22(4):317–331

    Article  Google Scholar 

Download references

Acknowledgments

Funding for this project was provided by the Alberta Prion Research Institute (APRI), PrioNet, and the Natural Sciences and Engineering Research Council (NSERC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David S. Wishart.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1587 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berjanskii, M., Zhou, J., Liang, Y. et al. Resolution-by-proxy: a simple measure for assessing and comparing the overall quality of NMR protein structures. J Biomol NMR 53, 167–180 (2012). https://doi.org/10.1007/s10858-012-9637-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-012-9637-2

Keywords

Navigation