Skip to main content
Log in

N-terminal Dbl domain of the RhoGEF, Kalirin

  • NMR structure note
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Berjanskii MV, Wishart DS (2005) A simple method to predict protein flexibility using secondary chemical shifts. J Am Chem Soc 127(43):14970–14971

    Article  Google Scholar 

  • Blangy A, Bouquier N, Gauthier-Rouviere C, Schmidt S, Debant A, Leonetti JP, Fort P (2006) Identification of TRIO-GEFD1 chemical inhibitors using the yeast exchange assay. Biol Cell 98(9):511–522

    Article  Google Scholar 

  • Chhatriwala MK, Betts L, Worthylake DK, Sondek J (2007) The DH and PH domains of Trio coordinately engage Rho GTPases for their efficient activation. J Mol Biol 368(5):1307–1320

    Article  Google Scholar 

  • Eva A, Aaronson SA (1985) Isolation of a new human oncogene from a diffuse B-cell lymphoma. Nature 316(6025):273–275

    Article  ADS  Google Scholar 

  • Guntert P (2004) Automated NMR structure calculation with CYANA. Methods Mol Biol 278:353–378

    Google Scholar 

  • Hoch JC, Stern AS (1996) NMR data processing. Wiley, New York

    Google Scholar 

  • Lin Z, Yingqi Xu, Yang S, Yang D (2006) Sequence-specific assignment of aromatic resonances of uniformly 13C,15N-labeled proteins by using 13C- and 15N-edited NOESY spectra. Angew Chem Int Ed 45(12):1960–1963

    Article  Google Scholar 

  • Liu X, Wang H, Eberstadt M, Schnuchel A, Olejniczak ET, Meadows RP, Schkeryantz JM, Janowick DA, Harlan JE, Harris EA, Staunton DE, Fesik SW (1998) NMR structure and mutagenesis of the N-terminal Dbl homology domain of the nucleotide exchange factor Trio. Cell 95(2):269–277

    Article  Google Scholar 

  • Ma XM, Johnson RC, Mains RE, Eipper BA (2001) Expression of kalirin, a neuronal GDP/GTP exchange factor of the trio family, in the central nervous system of the adult rat. J Comp Neurol 429(3):388–402

    Article  Google Scholar 

  • Mionnet C, Bogliolo S, Arkowitz RA (2008) Oligomerization regulates the localization of Cdc24, the Cdc42 activator in Saccharomyces cerevisiae. J Biol Chem 283(25):17515–17530

    Article  Google Scholar 

  • Rabiner CA, Mains RE, Eipper BA (2005) Kalirin: a dual Rho guanine nucleotide exchange factor that is so much more than the sum of its many parts. Neuroscientist 11(2):148–160

    Article  Google Scholar 

  • Rieping W, Habeck M, Bardiaux B, Bernard A, Malliavin TE, Nilges M (2007) ARIA2: automated NOE assignment and data integration in NMR structure calculation. Bioinformatics 23(3):381–382

    Google Scholar 

  • Rossman KL, Der CJ, Sondek J (2005) GEF means go: turning on RHO GTPases with guanine nucleotide-exchange factors. Nat Rev 6(2):167–180

    Article  Google Scholar 

  • Schmidt S, Diriong S, Mery J, Fabbrizio E, Debant A (2002) Identification of the first Rho-GEF inhibitor, TRIPalpha, which targets the RhoA-specific GEF domain of Trio. FEBS Lett 523(1–3):35–42

    Article  Google Scholar 

  • Skowronek KR, Guo F, Zheng Y, Nassar N (2004) The C-terminal basic tail of RhoG assists the guanine nucleotide exchange factor trio in binding to phospholipids. J Biol Chem 279(36):37895–37907

    Article  Google Scholar 

  • Vetter IR, Wittinghofer A (2001) The guanine nucleotide-binding switch in three dimensions. Science 294(5545):1299–1304

    Article  ADS  Google Scholar 

  • Vranken WF, Boucher W, Stevens TJ, Fogh RH, Pajon A, Llinas M, Ulrich EL, Markley JL, Ionides J, Laue ED (2005) The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins 59(4):687–696

    Article  Google Scholar 

  • Xu Y, Zheng Y, Fan JS, Yang D (2006) A new strategy for structure determination of large proteins in solution without deuteration. Nat Methods 3(11):931–937

    Article  Google Scholar 

  • Zhang L, Yang D (2006) SCAssign: a sparky extension for the NMR resonance assignment of aliphatic side-chains of uniformly 13C,15N-labeled large proteins. Bioinformatics 22(22):2833–2834

    Google Scholar 

  • Zhu K, Debreceni B, Bi F, Zheng Y (2001) Oligomerization of DH domain is essential for Dbl-induced transformation. Mol Cell Biol 21(2):425–437

    Article  Google Scholar 

Download references

Acknowledgments

Support from the US National Institutes of Health is gratefully acknowledged (grants MH65567 to M.R.S., and RR020125 and GM047467 to J.C.H.). We thank Dr. Jeffrey Lary from the National Analytical Ultracentrifugation Facility, The University of Connecticut, Storrs, USA for performing the analytical ultracentrifugation experiments and Dr. Mark Maciejewski for helpful discussion and suggestions on NMR experiments. We thank Dr. Andrei Alexandrescu for the Pf1 phage and help with preliminary RDC experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey C. Hoch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gorbatyuk, V.Y., Schiller, M.R., Gorbatyuk, O.I. et al. N-terminal Dbl domain of the RhoGEF, Kalirin. J Biomol NMR 52, 269–276 (2012). https://doi.org/10.1007/s10858-012-9605-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-012-9605-x

Keywords

Navigation