Skip to main content
Log in

A segmental labeling strategy for unambiguous determination of domain–domain interactions of large multi-domain proteins

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

NMR structural determination of large multi-domain proteins is a challenging task due to significant spectral overlap with a particular difficulty in unambiguous identification of domain–domain interactions. Segmental labeling is a NMR strategy that allows for isotopically labeling one domain and leaves the other domain unlabeled. This significantly simplifies spectral overlaps and allows for quick identification of domain–domain interaction. Here, a novel segmental labeling strategy is presented for detection of inter-domain NOEs. To identify domain–domain interactions in human apolipoprotein E (apoE), a multi-domain, 299-residues α-helical protein, on-column expressed protein ligation was utilized to generate a segmental-labeled apoE samples in which the N-terminal (NT-) domain was 2H(99%)/15N-labeled whereas the C-terminal (CT-) domain was either 15N- or 15N/13C-labeled. 3-D 15N-edited NOESY spectra of these segmental-labeled apoE samples allow for direct observation of the inter-domain NOEs between the backbone amide protons of the NT-domain and the aliphatic protons of the CT-domain. This straightforward approach permits unambiguous identification of 78 inter-domain NOEs, enabling accurate definition of the relative positions of both the NT- and the CT-domains and determination of the NMR structure of apoE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bax A (2003) Weak alignment offers new NMR opportunities to study protein structure and dynamics. Protein Sci 12(1):1–16

    Article  Google Scholar 

  • Burt TD, Agan BK, Marconi VC, He W, Kulkarni H, Mold JE, Cavrois M, Huang Y, Mahley RW, Dolan MJ, McCune JM, Ahuja SK (2008) Apolipoprotein (apo) e4 enhances hiv-1 cell entry in vitro, and the apoe epsilon4/epsilon4 genotype accelerates HIV disease progression. Proc Natl Acad Sci USA 105(25):8718–8723

    Article  ADS  Google Scholar 

  • Cui C, Zhao W, Chen J, Wang J, Li Q (2006) Elimination of in vivo cleavage between target protein and intein in the intein-mediated protein purification systems. Protein Expr Purif 50(1):74–81

    Article  Google Scholar 

  • Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMR pipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6(3):277–293

    Article  Google Scholar 

  • Dong LM, Weisgraber KH (1996) Human apolipoprotein e4 domain interaction. Arginine 61 and glutamic acid 255 interact to direct the preference for very low density lipoproteins. J Biol Chem 271(32):19053–19057

    Article  Google Scholar 

  • Dong LM, Wilson C, Wardell MR, Simmons T, Mahley RW, Weisgraber KH, Agard DA (1994) Human apolipoprotein e. Role of arginine 61 in mediating the lipoprotein preferences of the e3 and e4 isoforms. J Biol Chem 269(35):22358–22365

    Google Scholar 

  • Dong LM, Parkin S, Trakhanov SD, Rupp B, Simmons T, Arnold KS, Newhouse YM, Innerarity TL, Weisgraber KH (1996) Novel mechanism for defective receptor binding of apolipoprotein e2 in type iii hyperlipoproteinemia. Nat Struct Biol 3(8):718–722

    Article  Google Scholar 

  • Fan D, Li Q, Korando L, Jerome WG, Wang J (2004) A monomeric human apolipoprotein e carboxyl-terminal domain. Biochemistry 43(17):5055–5064

    Article  Google Scholar 

  • Ferrage F, Dutta K, Shekhtman A, Cowburn D (2010) Structural determination of biomolecular interfaces by nuclear magnetic resonance of proteins with reduced proton density. J Biomol NMR 47(1):41–54

    Article  Google Scholar 

  • Gardner KH, Kay LE (1998) The use of 2h, 13c, 15n multidimensional NMR to study the structure and dynamics of proteins. Annu Rev Biophys Biomol Struct 27:357–406

    Article  Google Scholar 

  • Garrett DS, Powers R, Gronenborn AM, Clore GM (1991) A common sense approach to peak picking two-, three- and four-dimensional spectra using automatic computer analysis of contour diagrams. J Magn Reson 95:214–220

    Google Scholar 

  • Golovanov AP, Blankley RT, Avis JM, Bermel W (2007) Isotopically discriminated NMR spectroscopy: a tool for investigating complex protein interactions in vitro. J Am Chem Soc 129(20):6528–6535

    Article  Google Scholar 

  • Guntert P (2004) Automated NMR structure calculation with cyana. Methods Mol Biol 278:353–378

    Google Scholar 

  • Hatters DM, Peters-Libeu CA, Weisgraber KH (2006) Apolipoprotein e structure: insights into function. Trends Biochem Sci 31(8):445–454

    Article  Google Scholar 

  • Huang Y (2010) Mechanisms linking apolipoprotein e isoforms with cardiovascular and neurological diseases. Curr Opin Lipidol 21(4):337–345

    Article  Google Scholar 

  • Huang Y, Weisgraber KH, Mucke L, Mahley RW (2004) Apolipoprotein e: diversity of cellular origins, structural and biophysical properties, and effects in Alzheimer’s disease. J Mol Neurosci 23(3):189–204

    Article  Google Scholar 

  • Ignatova Z, Gierasch LM (2004) Monitoring protein stability and aggregation in vivo by real-time fluorescent labeling. Proc Natl Acad Sci USA 101(2):523–528

    Article  ADS  Google Scholar 

  • Johnson BA, Blevins RA (1994) NMR view: a computer program for the visualization and analysis of NMR data. J Biomol NMR 4:603–614

    Article  Google Scholar 

  • Karagiannides I, Abdou R, Tzortzopoulou A, Voshol PJ, Kypreos KE (2008) Apolipoprotein e predisposes to obesity and related metabolic dysfunctions in mice. FEBS J 275(19):4796–4809

    Article  Google Scholar 

  • Ma SW, Benzie IF, Yeung VT (2008) Type 2 diabetes mellitus and its renal complications in relation to apolipoprotein e gene polymorphism. Transl Res 152(3):134–142

    Article  Google Scholar 

  • Mahley RW, Weisgraber KH, Huang Y (2009) Apolipoprotein e: structure determines function, from atherosclerosis to alzheimer’s disease to aids. J Lipid Res 50(Suppl):S183–S188

    Article  Google Scholar 

  • Masterson LR, Tonelli M, Markley JL, Veglia G (2008) Simultaneous detection and deconvolution of congested nmr spectra containing three isotopically labeled species. J Am Chem Soc 130(25):7818–7819

    Article  Google Scholar 

  • Pervushin K, Riek R, Wider G, Wuthrich K (1997) Attenuated t2 relaxation by mutual cancellation of dipole–dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc Natl Acad Sci USA 94(23):12366–12371

    Article  ADS  Google Scholar 

  • Philipps B, Hennecke J, Glockshuber R (2003) Fret-based in vivo screening for protein folding and increased protein stability. J Mol Biol 327(1):239–249

    Article  Google Scholar 

  • Tugarinov V, Kay LE (2005) Methyl groups as probes of structure and dynamics in NMR studies of high-molecular-weight proteins. Chembiochem 6(9):1567–1577

    Article  Google Scholar 

  • Vitali F, Henning A, Oberstrass FC, Hargous Y, Auweter SD, Erat M, Allain FH (2006) Structure of the two most c-terminal RNA recognition motifs of ptb using segmental isotope labeling. EMBO J 25(1):150–162

    Article  Google Scholar 

  • Weisgraber KH (1994) Apolipoprotein e: structure-function relationships. Adv Protein Chem 45:249–302

    Article  Google Scholar 

  • Weisgraber KH, Rall SC Jr, Mahley RW (1981) Human e apoprotein heterogeneity. Cysteine-arginine interchanges in the amino acid sequence of the apo-e isoforms. J Biol Chem 256(17):9077–9083

    Google Scholar 

  • Wilson C, Mau T, Weisgraber KH, Wardell MR, Mahley RW, Agard DA (1994) Salt bridge relay triggers defective LDL receptor binding by a mutant apolipoprotein. Structure 2(8):713–718

    Article  Google Scholar 

  • Zhang Y, Vasudevan S, Sojitrawala R, Zhao W, Cui C, Xu C, Fan D, Newhouse Y, Balestra R, Jerome WG, Weisgraber K, Li Q, Wang J (2007) A monomeric, biologically active, full-length human apolipoprotein e. Biochemistry 46(37):10722–10732

    Article  Google Scholar 

  • Zhang Y, Chen J, Wang J (2008) A complete backbone spectral assignment of lipid-free human apolipoprotein e (apoe). Biomol NMR Assign 2(2):207–210

    Article  MathSciNet  Google Scholar 

  • Zhao W, Zhang Y, Cui C, Li Q, Wang J (2008) An efficient on-column expressed protein ligation strategy: application to segmental triple labeling of human apolipoprotein e3. Protein Sci 17(4):736–747

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by NIH RO1 grant from the NIH (HL074365 to Jianjun Wang), a grant from the American Health Assistant Foundation (Jianjun Wang). The authors also thank Rebecca Wang for critical reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianjun Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, J., Wang, J. A segmental labeling strategy for unambiguous determination of domain–domain interactions of large multi-domain proteins. J Biomol NMR 50, 403–410 (2011). https://doi.org/10.1007/s10858-011-9526-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-011-9526-0

Keywords

Navigation